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wave model. As an unmodulated beam current in-
creases, the spontaneous emission becomes
strong, but its bandwidth is still narrow (A~/&u
-1.5x10 ' at 1,=2.3 mA). The amplitude of the
emission increases exponentially and becomes
saturated, where the corresponding f,(U) are sim-
ilar with those in Fig. 2, though the energy spread
is rather broad. Therefore, trapping of beam
electrons is still dominant in this case.
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formly within a column with a diameter of R/2~ 2.
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We derive and solve numerically the self-consistent set of equations for the nonlocal
shear viscosity and the order-parameter decay rate near the critical point of fluids.
This removes the ambiguity associated with the so-called "high frequency" shear vis-
cosity entering the theoretical expressions for the Rayleigh linewidth, and improves the
agreement with the measured linewidth of Chang et al.

Decay rates of order-parameter fluctuations
near the critical point of fluids have been exten-
sively investigated lately by the techniques of in-
elastic scattering of laser light, ' and have been
compared with the following mode-mode-coupling
theoretical expression' for the decay rate I'„
with the wave vector q:

where ( is the range of correlation of order-pa-

rameter fluctuations and

K,(x) =-,'[1+x'+ (x' -x') tan 'x].
Here g* is customarily referred to as "high fre-
quency" shear viscosity and is temporarily iden-
tified with the shear viscosity q(T) obtained by
macroscopic measurements since theoretically
q(T) must remain finite at the critical point.
However„ there are theoretical' and experirnen-
tal' indications that the shear viscosity should
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have at least a cusplike sharp peak at the critical
point, and hence the value of q* to be used in (1)
remains somewhat ambiguous. The situation was
critically examined recently by Chang et al. ,

' and
the problem remains quite unsettled.

It is the purpose of the present communication
to remove this ambiguity by considering the pair
of equations which determine self-consistently
both I'„and the wave-number-dependent nonlo-
cal shear viscosity q, . Such equations can be ob-
tained from the self-consistent set of equations
for propagators G,„(t) and G„(t) for transverse
velocity & and order parameter s, respectively,
which are normalized to reduce to unity for t =0.
In the approximation where vertex corrections
are ignored, they are given, for instance, by
Eqs. (30) and (31) of Ref. 3, where the concentra-
tion c should be replaced by a more general or-

Here

277 ) Xq 0$
(3)

'(), = (p/q')[f G,„(t) dt] ' (4

defines the nonlocal (or q-dependent) shear vis-
cosity )('k —( Is k I'), and 9 is the angle between q
and k. Here the "background" term, denoted as
q'0, ' in Ref. 3, has been ignored. This form of
G„(t) is substituted back into Eq. (30) of Ref. 3
to give the following expression for g, :

der parameter s. In view of the fact that the
transverse local velocity decays to zero infinite-
ly faster than the order parameter at the criti-
cal point, "Eq. (31) can be approximated by the
"Markovian" equation for G„(t) with the result
that G„(t)= exp( —tI'„), where the decay rate is
given by

0 kqT 1 3 2 . 2 1 1
= 'ff +(( 2q2 (2~)3 k q. k

)t )t
ks q ks ~d'au'sin'e q-)t-. -k —— — [r- +I -.- ] '. (5)

Equations (3) and (5) thus constitute the self-consistent set of equations for I'„and g,. Unfortunately,
however, the integral in (5) diverges at large k, as noted in Ref. 3 and these equations cannot be im-
mediately handled. However, if we choose to give up predicting the critical anomaly in the macroscop-
ic shear viscosity

q(T) =lim7l, ,
e 0

but rather to focus our attention only on the nonlocality (or q dependence) of q„ then this divergence
difficulty disappears as one ean readily verify by subtracting q(T) from both sides of (5). Assuming
the Ornstein-Zernike form for )tk- (k'+ $ ') ', we find by inspection of the resulting self-consistent
equations that g, and I„take the following forms:

~, =n(T)II -+(q5)],
r„=[n, T/o~q(T)~'] J~(qg) .

The functions & and K are then determined by the following integral equations:

K(x) = 2x (1+x') d y sin 8 —
~4m

8w'x* 1+y* 2K(y) 1+y' K(y)+K(lx —y~) 1+ (x —y)*) '

where 0 is the angle between the vectors x and y.
Note that the so-called high-frequency viscosity
g* is related to the macroscopic shear viscosity
q(T) by

n*= [&.(qk)A(qh)]n(T) (10)

The equations (8) and (9) have been solved nu-

merically by iteration starting with K=&0 and the
results are shown in Figs. 1, 2, and 3. Note that
the correction on I"„arising from the nonlocality
of g, is fairly important, amounting to roughly

L 30% for q$ = 20, and remains finite (- 5.5%) even
in the hydrodynamic regime. The new linewidth
function K is compared with the observed line-
width for the binary critical mixture 3-methyl-
pentane-nitroethane along with the old linewidth
function K0 in Fig. 4 where very precise mea-
surements of q(T) are available. ' Note that no
adjustable parameter enters the theoretical curve
and there is a clear improvement in the fit with
data points. In the eases where 71(T) is not avail-
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FIG. 1. The function + defined by Eq. {6).
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able, the theoretical curve K can still be tested
by measuring linewidths at different scattering
angles but at the same temperature. It would be
also quite interesting to test the form of g„Eq.
(6), by inelastic light scattering by interfaces, '
as well as by measuring the diffusion constant of
fine particles dispersed in fluids. '

We conclude this communication with the follow-
ing additional remarks: (i) The background con-
tribution to I„,which has been ignored so far,
on the one hand tends to enhance the theoretical
linewidth; on the other hand it also acts to re-
duce the difference between K(q() and K,(q$). The

kg

FIG. 8. Ratio of the new and old linewidth functions.

net result presumably will further improve the
agreement with experimental results. (ii) The
mode-mode coupling that enters (5) is less well-
founded than that entering (3) in the sense that
three-, four-, ~ ~ ~ mode intermediate states can-
not be ignored a Priori. (iii) In the present work
we have not included a possible frequency depen-
dence of the shear viscosity and the order-param-
eter decay rate since a complete treatment of
this effect would enormously complicate the prob-
lem. As indicated by the recent work of Perl and
Ferrell on the same problem, ' inclusion of this
effect would tend to reduce further the difference
between K and K„especially in the critical re-
gime.

100 I I I I I I III

IO

50—

I I I I I I I I1

40-
20

20-

10

lP

Io
O
X

5
I-
g

~ ~
~ ~

gy e ~ ~
~ ~

5- METHYLPENTANE-NITROETHANE

2

1.5 -
1.5

I

0.1

I I I I I I III
0.2 0.5 0.5 I

I I I I I I III I

2 3 5 IO 20 30

I

0.1

I I I I I I I II
0.2 0.4 I.O

I I I I I I I I I

2 4
kg

10 20 30
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FIG. 4. Comparison of the linewidth functions with
the data of Chang et ~l. {Ref. 5). The data points are
taken from Fig. 11 of the second reference of Ref. 5,
and the solid and dashed lines represent the new and
old theoretical linewidth functions, respectively.
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The Quctuation-dissipation formula for the viscosity in terms of the stress-tensor Quc-
tuations reproduces the experimental logarithmic temperature dependence of the hydrody-
namic viscosity. Using the theoretical wave-number- and frequency-dependent viscosity
in the problem of critical diffusion, we find that the effects of nonlocality and retardation
practically cancel, resulting in satisfactory agreement with a recent light-scattering de-
termination of the effective viscosity.

Kawasaki' has shown that the critical variation
of the diffusion coefficient in a binary liquid near
its critical point can be represented by the Ein-
stein relation D = Tp &, where T is the tempera-
ture (we use natural units such that Boltzmann's
constant is unity), $ is the correlation length for
the concentration fluctuations, and p & =(67rq)) '
is Stokes's formula for the mobility of a sphere
of radius $ moving through a liquid of viscosity

This result has also been established by one
of the present authors' by a different method, and
gives the rate of relaxation of a concentration
fluctuation of wave number q as

F, =Dq' = Tq'/6nri g,

provided $«q '; i.e., the wavelength should be
much greater than the correlation length. But,
as the critical point is approached, T- T, and $

The above inequality is then no longer satis-
fied and D becomes a function of q, corresponding
to "nonlocal" diffusion. This change is carried
out in Eq. (1) by substitution of an effective value
for $

' according to

(h '),fr=a, ttq,

where a, ff is some numerical constant of order
of magnitude unity. Equation (2) expresses in a
quantitative form the qualitative rule of dynami-
cal scaling' that all temperature dependence is
to be expressed in terms of 8, and that as T- T,
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