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table in the 1f7„shell. The additional masses re-
quired may be measured using the (p, He) reac-
tion, and current plans are to use the techniques
we have developed for the (3He, 'He) measure-
ments in investigating the (p, 'He) reaction.

We wish to thank Professor G. Bertsch for in-
teresting discussions concerning our results.
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Three-Nucleon Bound State from Faddeev Equations with a Realistic Potential
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A method for solving Faddeev equations in configuration space is used to study the state
of three nucleons bound in a Reid potential. Including D states for the spectator particle
gives a binding energy of 6.6 MeV, probabilities Pg~=l. SVo, &~=7.9', and a charge
radius ~~(~He) =1.97 fm; the dip in the charge form factor is found at @2=14.5 fm 2.

Exact treatment of the three-nucleon bound
state can provide a significant test for realistic
two-nucleon interactions.

We here give an exact solution of the Faddeev
equations for three nucleons bound via the Reid
soft-core potential' acting on the states S» 'D»
D2 Sp and 'D~. Vfe consider the six compo-

nents [g, ~~'(x, y)e~ ],/, of the Faddeev amplitude
listed in Table I. Distances and orbital momenta
are denoted by x and l for the interacting pair,
and y and X for the spectator particle; l and X are
coupled to total momentum I.. The spin isospin
state es is characterized by total spin S and by
n which stands for A, —,or + according to wheth-
er e s has complete antisymmetry, mixed sym-
metry and antisymmetry, or symmetry, respec-
tively, under the exchange of two interacting par-

TABLE I. Independent components of the Faddeev
amplitude included in the complete computation.

Component

0

0
0

2

1/2
1/2
1/2
1/2
8/2
3/2

ticles. Then, writing the Faddeev equations in
configuration space turns them into a set of six
partial differential equations' for the six unknown
functions of Table I. Typically, the first equa-
tion, which involves the spatially symmetric corn-
ponent, has the following form':

gm gS pm
—; + —;+E- V(x) g„,"(x,y)= V(x) —, , g„,"(x',y')du+4(x, y),

where

x' = —,'(x' —2W3xyu + 3y')'~', y' = —,'(y'+ 2v 3 xyu+ 3x')'i'.

Here the potential V(x) is the average interaction in 8, and '8, states; the function C(x, y) is a short-
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hand notation for contributions from the five other
components. The integrodifferential set may also
be written

(2)Pg(x, y) =Eg(x, y),

where g is the vector of the six g»~ considered
and IJ is a linear operator involving second-order
partial derivatives and one-dimensional integrals.

We solve the 8igenvalue problem (2) by the so-
caBed inverse iteration. StRrting from an initial
guess g (x, y) and expanding it in the eigenfunc-
tions of IJ, one can see that the iteration

(3)

makes P" (x, y) converge towards the eigenfunction
P(x, y) corresponding to the eigenvalue E closest
to the number P. Equation (3) can be turned into
finite-difference equations-for a set of N values
of g» "(x,y) on a grid-~vhich we then solve by a
relaxation method. Such a method does not in-
volve explicitly the complete matrix of the linear
set.

We have used a set of j.927 discrete points in
the (x, y) plane for each of the six components
p, ~ (x, y) and imposed those to be zero on the
boundaries x=0, y=0, and (x'+y')'~'=25 fm, re-
spectively. Our results were stable with respect
to variations in energy guess P (we took —30 MeV),
discretization mode, and cutoff radius. More
details about the method will be given in Ref. 3,
but it is important to point out the usefulness of
the relRxatlon method which does not impose Rny
practical limit on the number of points or com-
ponents considered.

We have done a first computation with only com-
ponents 1, 2, Rnd 3 of Table I. It gave binding
energy Ee = —6.39 MeV, 'He charge radius r, ('He)
=2.00 fm, and the minimum of SHe charge form
factor at q'= 15.2 fm ~ (Fig. 1). The energy we
obtained is in agreement with the calculation of
Fischbach eI, a/. 4. However, our values for the
probabilities were Pe.=2.0% and Pa =7.8%,
against 1.8 and 5.8%%uo, respectively.

Adding all the A. =2 components listed in Table
I to our computation had little influence on the
energy and probabilities which became E~ = —6.64
MeV, P ~. = 1.9% and Po = 7.9%%uo. This behavior,
different from what Harper, Kim, and Tubis'
have found, may be due to the contributions of
ou1 A, 2 components ln Rll symmetry stRtes
while the X = 2 components considered by these
authors contribute only to I'~. On the other hand,
some computations we have done for the spatially
symmetric components g«o" (x, y) and g», "(x,y)

~ ~
II

I

CI'(f rn ')
8 I. ma s I 8

10 12 14 16 18 20 22 24

FIG. 3.. Cha.X'ge fOX'3Xi f8.CCQX' Of He ~thOUt (dRshed
curve) and with (solid curve) &=2 components. Experi-
mental data are taken from McCarthy et al. (Bef. 7).
We used the analytic form of Jausseus «al. (Bef. 8)
fOX' the QUCIGOQ ChRX'ge fOX'XQ fRCtOX'8,

with repulsive-core potentials may indicate that
the range shortness of the repulsive part in the
Reid soft-core potential is responsible for the
weakness of the energy variation when A. =2 com-
ponents are added. However, we obtained charge
radii r, ( He) =1.97 fm and r,('H) =1.72 fm and the
minimum of the 3He charge form factor at qm

=14.5 fm ' (Fig. 1) which manifests the impor-
tance of including A. &0 components for some cru-
cial observab1es. ' We found a second maximum
in the form factor at q'=20 fm"~, too small by a
factor of 3 (instead of a factor of 8 as in Ref. 5).

We give in Table II the probabilities of the total-
wave-function components which were used to
compute the observable. One concludes from
this table that the component g»o e,~, could have
been discarded from the computation, but that
g», "e,~;" and g,» e,&, contribute noticeably to
the total wave function. The odd l Rnd X compo-
nents turn out to be important, and we are now in-
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Probability
( lo)

1/2
1/2
1/2
1/2
1/2
9/2
8/2
8/2
9/2
8/2

88.1
1.6
0.9
0.1
0.9
2.7
0.8
1.6
0.4
1.1

TABLE 0, Angular-momentum analysis of the total
wave function of the three-nucleon bound state,

matrix. Moreover, the method we described
takes advantage of the appearance of the energy
as an eigenvalue, and does not set a limit on the
manageable number of components of the Faddeev
amplitude. Our results for the properties of the
three-nucleon bound state are in general agree-
ment with those obtained from another exact (but
fundamentally different) method; they confirm
the relevance of some higher orbital momentum
states in predicting the change form factor.

We wish to thank A. Hervd for stimulating dis-
cussions.

eluding some of them directly in the Faddeev
amplitude (then the two-nucleon interaction in
odd states occurs); in fact, one can wonder if
neglecting components of the Faddeev amplitude
which appear in the total wave function is not
somewhat inconsistent.

The use of configuration space makes the solu-
tion of Faddeev equations for bound states straight-
forward. In this case the potential occurs directly
instead of the physically equivalent two-body t
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We have studied a system consisting of a particle coupled to a rotating core. Although
a complete decoupling of particle and core occurs only at very small deformations (cou-
pling strengths), a "favored" high-spin band of levels tends tc be decoupled over a much
larger region of deformation. This can be understood as a simple Coriolis effect, and
seems to be borne out remarkably well in some odd-A La isotopes.

In each of a series of five odd-A La isotopes,
a band of levels based on a state with I= —", has
been found" which has spin values increasing
monotonically from the base level by 2k per state,
and energy spacings very similar to the even-
even Ba isotope with one less proton. The corre-
spondence in energy is rather remarkable and is
shown in Fig. 1. The experimental data consist

of in-beam y-ray studies' following reactions
Sn("N, Sn)La, and proton-transfer-reaction stud-
ies' using the reactions Ba(n, t)La. The first
work revealed the cascades of stretched-E2 y
rays, and the second indicated that these cas-
cades were systematically based on '-,' states.
This band might be explained by a particle-core
weak-coupling model, ' but this model seems im-


