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A central problem in the theory of phase transitions is the calculation of the order-pa-
rameter correlation function. Here we study the correlation function of an n-component
order parameter whose configuration energy is determined by the usual Landau function-
al. Using a screening approximation, we obtain a simple closed form for the Fourier
transform of the correlation function and examine its dependence on wave vector k and
the reciprocal correlation length a.

%hen Landau's theory of phase transitions' is
extended to include averages over all order-pa-
rameter configurations, the partition function
can be expressed as the functional integral

Z„= jete ' o".
Here 5y denotes an arbitrary configuration of the
n-component order parameter in volume 0, and
E„has the form

»',bi f„~».r(2*v +—
2- I»»;I')

responding to the basic cell size for which the
Landau form of E is appropriate. Using Dyson's
equation, the Fourier transform of the exact cor-
relation function is related to g,(k) by the self-
energy

g(k) '=g, (k) '-Z(k').
A dressed reciprocal correlation length n can
now be introduced by the relation

K =
Ko —ZoTZ(- K ).

Substituting this back into Eq. (6) we have

(3)

%hen 5 vanishes, the functional integration re-
duces to a Gaussian form, and one obtains the
ornstein- Zernike' result

O,(r) = (Z,T/4~)e "o"/r. (4)

with Ko = (aZ, )' ' and r = Ixl.
In treating the effects of the interaction, we

introduce the usual diagramatic procedure in
which the four-point interaction (b/4n)(Q;q, ')' is
represented by a dashed line connecting four
solid lines each of which represents the Fourier
transform of (4),

g,(k) = Z, T/(k'+ ~,').
All wave-vector sums are cut off at kD ', cor-

with a = (T —T,')a', and a', b, and Zo
' are posi-

tive constants. In this same scheme, the normal-
ized order-parameter correlation function be-
comes

(8)

In y' theory, Z(k') has branch cuts along the —k'
axis beginning at -(nv)' Here. n=3, 5, cor-
responds to the number of intermediate fluctua-
tion lines. Assuming that Z is analytic else-
where in the k' plane, and using the kD cutoff, Z
satisfies the dispersion relation

5)
w ~ 2 k" —k'

D

%hen z»k, the branch cut in Z is sufficiently
far from the important region of the k' plane that
the self-energy appearing in Eq. (8) can be ex-
panded about -x'. In lowest order, this gives an
ornstein-Zernike form for g,

g(k') =-Zqz, T/(k'+ K'),

with a renormalized strength parameter

Zv
'= 1 —Z,T(&Z/&k') ~~2

As the critical point is approached, the branch
cuts move toward the origin, and when k ~ K, this
expansion is no longer useful. Instead, we intro-
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duce an effective k-dependent renormalization
parameter Z,«(k, ~) by the relation

ZA T
k + K Z T[Z(k ) —Z( —K')J

= z,«(k, ~)z,T/(k'+ ~'). (12)

For e» k, Z, &f reduces to Z&, Eg. (11), while at
the critical point g(k) varies as Z, f&(k, 0)k '. Tbe
function Z, «(k, z) determines bow tbe correlation
function changes between these two forms.

From the dispersion relation Eq. (9), it follows
that the self-energy can be determined once ImZ
is known. This approach turns out to be analyt-
ically convenient. For example, the renormaliza-
tion parameter Z& can be simply expressed in
terms of ImZ,

-9K2 I (P»b
(13)

~ (k"+ 5')'-kD

In addition, we know some properties which any
physically meaningful approximation for ImZ
should satisfy: (1) —ImZ(k'+ i0+) is a positive
function for k'& —(3z)' and vanishes for k'
& —(3v)', (2) for k'« —k,', where k, is a screen-
ing wave vector defined below, ImZ approaches
a constant given by the lowest-order perturba-
tion contribution; (3) at the critical point when
&=0, we expect' that in the range -0,'«P'~Q

-I 0 2 3 5
in(i, /7TK)

FIG. 1. Inset, self-energy graph used in our screen-
ing approxilnation. Solid line, pole renormalization
parameter plotted as Zy —1 versus Iu(k, /we). Dashed
Il11es Zgff —1 versus In(k, /rv) for various k,/k
ratios ~

and an n for each closed loop. The screening
approximation gives a contribution of order n ',
and all other diagrams involve at least one addi-
tional power of n '. Thus, this approximation
provides the first nontrivial correction to the
spherical model (n- ~).

The self-energy associated with the diagram
of Fig. 1 is

—Z, T, ImZ(k +i0') = —;sin —,mq
C

,'err' iki-, - (14)

i~ n (2r)' (q+ k)'+ a'
II(q) corresponds to the infinite bubble sum in
Fig. 1, and is given by'

where the last form is correct to leading order
in the anomalous dimension index q first intro-
duced by Fisher. '

Now, in general, we cannot expect to evaluate
Z exactly and some type of approximation must
be introduced. Previously, on physical grounds,
we investigated the screening approximation' for
the self-energy shown diagramatically in Fig. 1.
Following this work, Wilson' suggested to us the
relevance of our results for the n-component
field. Recently, Ma' has applied these ideas to
analyze the critical exponents for charged and
neutral Bose gases. While the original motiva-
tion for the screening approximation arose from
the construction of the simplest partial resumma-
tion which would conform to the three require-
ments on ImZ previously listed, it also generates
the leading n ' self-energy correction for an n-
component field. The n dependence of a diagram
is determined by a factor n ' for each interaction

II(q) ' = II,(q) '+ pb/2n,

with

rl, (q) = 2nje'"'G, '(x) d'x

= [(Z,T)'n/2~k J tan '(k/2~).

In the limit of vanishing a, II(k) becomes partic-
ularly simple,

11(k) = —,'(Z, '7,'n)(k+ k,) '.
Here tbe screening length k, '= Z, 'T,b/8 bas
been introduced. Thus, in this limit, while II,
diverges at low momentum, the bubble sum II(k)
is screened by k,. II,(k) corresponds to two
freely propagating fluctuations and has a spatial
correlation function varying as r ', while the
Fourier transform of the bubble sum drops off
as r ' for r»k, '. lt is this suppression of the
long-range part of the pair. correlations which
leads to a spectral weight which satisfies Eq.

414



VOLUME 29, NUMBER 7 PHYSICAL REVIEW LETTERS 14 AUGUST 1972

(14).' Note that this behavior is not present in the individual perturbation-theory graphs.
Integrating Eq. (15) and analytically continuing it to —k', we find that

ZT, 4 k, lkl 3K

k,' ' m lkl k, lkl
ImZ, =—1 —~ tan ' — 1-—8 (- (3g)' —k'). (19)

Z~ '-1+(4&&1.07/27m'n)(k, /~)', (21)

At K = 0 this is exact. A direct numerical evalua-
tion shows that it is an excellent approximation
for finite K E.xpanding Eq. (19) in powers of
k/k, for v=0 gives

—(Z T,/k, )ImZ, - (4/gn) —'(k/k, ) „ (20)

so that according to Eq. (14), q = 8/(3m'n).
Having obtained an analytic expression for the

spectral weight, we turn to the structure of the
correlation function. The renormalization param-
eter Z& obtained using ImZ, in Eq. (13) is plotted
as the solid line in Fig. 1. Well away from the
critical point, where the correlation length is
smaller than the screening length (g»k, ),

1.' However, as the critical point is approached,
the correlation length exceeds k, ' and for K

&& k,'

Z~
'- 1+q [In(k, /3x) —',—]- (k,/~) ". (22)

In this region, the renormalized strength of the
Ornstein-Zernike form vanishes as a small pow-
er q of the reciprocal correlation length.

When the temperature is sufficiently near tbe
critical point that ke K, tbe pole approximation
for g, Eq. (10), begins to fail; Just as the initial
failure of the Ornstein-Zernike relation is de-
scribed by the parameter g, it is convenient to
introduce a "curvature" parameter C, to describe
the deviation of g(k) from the pole approximation.
Expanding the self-energy about —K' and keeping
the second derivative term one has

Z, Tg ' -k'+ ~' —Z, TZ'(- ~')(k'+ x') ——,'Z, TZ"(- ~')(k'+ x')'.

The curvature coefficient

C, = ~'Z, TZ"(-~') (24)

can be evaluated within the screening approximation, and we find that C, is equal to 0.04'.
Eventually, the expansion of g about —K' is not useful, and the full k, K dependence of Z must be

taken into account. From the spectral weight Eq. (19) and the dispersion relation Eq. (9), we calculate
Z,(k') for k, large compared to k and x:

ek. 3K , k K
' ok.Z,TlZ, (k') —Z,(-v')]= t)k' ln-, '-»&, ——tan ' —+ — In ——'

[(3&)'+k']' ' k 3z k 8g (25)

Here n=e'~'. Using this in Eq. (12), Z, &&(k, ~)
has been evaluated and is plotted (dashed lines)
in Fig. 1 as a function of In(k, /m) for various
k,/k ratios. In the limit where k-0 we recover
essentially Z& '." However, for finite K the ef-
fective renormalization saturates when K becomes
small compared to k, and can be expected to be
observable in experiments carried out sufficient-
ly close to the critical point. This saturation
reflects the critical-point behavior of g (k), and
using Eq. (25), we find in the limit v = 0

Z,Tg '(k) = k'+t) O'In(nk, /k) —k'(k/k, ) ". (26)

Thus tbe same quantity g which enters into re-
normalizing the strength of the Ornstein-Zernike
pole as T, is approached also determines the
structure of the correlations of the order-param-
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From now on we will x'eplace ao by the rgnormaHzed

reciprocal correlation length s in all Go Green's func-
tions.

BThe factor 1.07 in Eq. (21) is (1—q
~ tan q) /2q

evaluated at q =-9~. It comes from evaluating the x'e-
normalization parameter at 4 =- x and would be & if
Zll wex'e evaluated at 4 =0.

'OThe power law has, of coux'se, only been generated
to leading logarithmic order by the screening approx-
imation. However, the higher-order terms can be ob-
tained by continuing the ~ ' expansion. These also gen-
erate further corrections to g in powers of n

There is a small difference, less than 10%, due to
the fact that &y is evaluated for 42=- ~2 rather than
k'=0.
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The behavior of supex'conducting Sn and Sn-In microbridges has been studied as a func-
tion of physical parameters of the evaporated films. For a proper choice of mean free
path and bx'idge size, a regime of ideal Josephson-junction-like behavior appears just be-
low 1',. The data are in good agreement with recent calculations by Baratoff, Blackburn,
and Schwartz.

The behavior of supercondueting "weak links"
has been the subject of several recent experimen-
tal" and theoretical' ' studies. Although both
dc' and ae' experiments indicate oscillatory be-
havior of the phase near the critical temperature
T„ the problem is complicated by the fact that
weak links exhibit bulk superconducting proper-
ties under some experimental conditions and
Josephson-junction-like propex ties undex others.
By measuring the temperature dependence of the
critical supercurrent of Sn and Sn-In alloy micro-
bridges, we have determined that there is a re-
gion of temperature below 7', within which the
bridges show near-ideal Josephson-junetion-like
behavior; this is further supported by simulta-
neous monitoring of the quality of the ae Joseph-
son effect. The width of this junctionlike regime
can be changed by varying the coherence length,
either by altering the mean free path of the film
via thickness and impurity content, or by chang-
ing the temperature. In the latter ease, the
bridges are shown to make a smooth transition
to bulk supereonductorlike behavior as the tem-
perature is decreased.

Figures 1 and 2 show the critical current ver-
sus temperature data for a number of -0.5-p, m
&0.5-pm Superconducting microbridges with

varying mgan free paths /. For the pure Sn films

of Fig. 1, / was decreased by decreasing the film
thickness, while for Fig. 2, / was shortened by
alloying In into the Sn. The transition tempera-
ture T, was determined by linearly interpolating
the critical current to zero from about 20 mK be-
low T„which was the highest temperature where
the critical current I, could be determined to
+ 20%. This was typically within 5 mK of the
temperature at which the dc supercurrent van-
ished to within the 1 p.A resolution of our appara-
tus. Three theoretical cuxves are shown in Fig.
1 for comparison with our data. The upper curve
is the temperature dependence of the critical
current density for an ideal Josephson junction
between two identical superconductors, e'7

where 8„is the normal-state resistance and
6(T) is the superconducting energy gap. At a re-
duced temperature (t= T/T, ) &0.95, J,-is linear
in T, —T for this case. The middle (solid) curve
is the critical current of a bulk superconductor,
neglecting the current dependence of the gap pa-
rametex. Using the tempexature dependence of
the two-fluid model, the critical current density

aybew tte as

J (T) — ~ ) (l t2)3/2(l +t2)1/2
47/~„(O)


