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In a modulated crossed-beam experiment we have elastically scattered unpolarized
electrons of 3.3 eV energy from spin-polarized K atoms. A measurement of the polari-
zation of the scattered electron yields If(8) I /o(8). Our measured values of Ifl /o(8)
show a significant angular shift relative to the theoretical curve in forward-angle scat-
tering (6=20 -40'). This shift is not apparent in measurements of the differential scat-
tering cross section 0(6)) over the same angular range, which, however, do show a sig-
nificant angular shift in the range 6) =50 -120 .

Elastic scattering of electrons from one-elec-
tron atoms, such as the alkalis and hydrogen, is
customarily described using two scattering ampli-
tudes, the direct amplitude f(8) and the exchange
amplitude g(8). ' This involves neglecting spin-
orbit coupling, electron-nuclear spin and elec-
tron-electron coupling during the collision, as
well as the influence of the core electrons on the
scattered electron. The differential scattering
cross section is written

o(8) = 2lf(8) I'+ -'IZ(8) I'+ -'If(8) -g (8)I'.
A complete solution to the collision problem re-
quires the knowledge of the magnitude of these
two amplitudes as well as the phase difference
between them; therefore three independent mea-
surements are necessary. In this paper we re-
port the first successful measurement of the
square of the direct scattering amplitude for low-

energy electron collisions with such one-electron
systems; we also report here an accurate rela-
tive differential cross section measurement at
the same energy.

To determine the scattering cross section one
measures the intensity of the scattered electrons;
one can also specify the spin state of one or both
of the incident particles and measure the polari-
zation of either of the scattered particles. In par-
ticular, in the experiment described here, unpo-

larized electrons are scattered from potassium
atoms whose polarization is P~, and the spin po-
larization of the scattered electrons I', ' is. mea-
sured. The relation between the scattering am-
plitudes and the measured electron polarization
is given by

If(8)l'/o(8) =l -p.'/& .

The scattering cross section o(8) was measured
in this experiment by summing over the scattered
electron spin states.

A separate experimental program, which has
been underway for some time at New York Uni-
versity, ' yields measurements of the polarization
of the scattered atoms, I'&', in a similar colli-
sion; this leads to the exchange amplitude

~
g(8)~'/o(8) = 1 I„/I „. -

The experiments reported here utilize a high-
vacuum crossed-beam apparatus; a schematic
diagram is shown in Fig. l. A mechanically mod-
ulated thermal potassium beam is polarized by
passage through a hexapole magnet. ' To make
differential analysis of the low-energy scattered
electrons possible, the magnetic field in the cen-
ter of the scattering chamber is reduced with
Helmholtz coils to less than 0.2 p T. The neces-
sary vertical axis of spin quantization is defined

by a pair of small Helmholtz coils which adds a
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FIG. 1. Schematic diagram of the apparatus.

1.0-p T field to the center of the interaction re-
gion.

The K beam leaving the hexapole magnet has a
calculated polarization of 7&.5%. In the low-field
region near the center of the scattering chamber,
hyperfine coupling with the nuclear spin reduces
the polarization by a factor of (2I+1) '; for nat-
ural K with I= 2 the beam polarization would be
19.6%. The molecular component in this polar-
ized beam is estimated to be less than 0.2%. The
alkali beam intensi. ty is monitored with a hot-
mire detector above the interaction region. The
multistage electron gun can be rotated in a plane
perpendicular to the alkali beam over a range of
scattering angles from —130' to +130'. The ener-
gy resolution of the gun. is about 0.3 eV as deter-
mined by retarding-potential measurements.

After scattering from the alkali atoms, the
electrons pass into a filter lens' which removes
unwanted inelastically scattered electrons. The
collecting system accepts electrons from a vol-
ume which is larger than the overlap region of
electron and atomic beams; hence no geometri-
cal correcti. ons of the angular distribution data
are necessary.

After the electrons leave the filter lens they
are accelerated through a potential of 100 kV and
spin analyzed by Mott scattering. ' ' The physical
observable in this experiment is the ratio of the
number of electrons counted by the two detectors
in the Mott scattering chamber. This ratio is

mhere ~ is the asymmetry function, '" which is a
function of energy, target thickness, and scatter-
ing angle.

To allow for compensation of the large back-
ground counting rate, the sealer gating is syn-
chronized to the rotation of the alkali beam chop-
ping mheel so that "signal-plus-background" and
"background" counting rates are separately mea-
sured.

To compensate for any instrumental asymme-
tries in each electron polarization measurement,
tmo measurements of y are made, one mith the
spin axis up, one with the spin axis down. This
is accomplished by inverting the small magnetic
field in the interaction region. The expression
for g used in formula (4) is then replaced by X'
= [g(&)/y(&)]"'. This procedure has been cheeked
by replacing the gold foil in the Mott chamber
with an aluminum foil. This reduces the asym-
metry due to polarization but leaves those due to
instrumental effects. ' In all cases scattering
electrons from the aluminum target yields a mea-
sured value of g =1.00 within statistical error.

The internal error in each measurement is dom-
inated by stati. stical fluctuations. For a chopped-
beam experiment of this type the standard (rms)
deviation 4P of the measured electron polariza-
t1on +~ 1s

1 —(SP,')' ~ ~ (E;;+B;,)'~'

g=x,m '=z,2 ~$y +i j
The subscri. pts i and j refer to the number of
counts recorded by sealer i with magnetic quanti-
zation field in a direction j (1, up; 2, down). F„
refers to measurements with the atomic beam on
(signal plus background) and &;; refers to mea-
surements with the atomic beam off (background).
In this experiment for example with 3.3-eV
electrons at 8=40', E;,=12 sec ', BE~=10 sec '.

In Fig. 2, values of IfI'/o computed from our
measurements of I', ' are plotted, 'o as mell as the
results of a theoretical computation" for 3 and 4
eV energy. The error bars represent 1 standard
deviation error for the measurement of P,'. The
atomic beam polarization P„used in this calcula-
tion was the theoretical value (-0.20). A precise
check on this value has not been accomplished,
and it should be regarded as an upper limit. . I ow-



14A4 AUGUST 1972

1.4

A

I I I I I I I
I

I I I
I

I I

VOLUME 29 N UM&ER 7

I I
I

I I I
I

I I
I

100—

PH YSI C L REVIEW LETT ERS

I.2—

0

4 0.8—
CU

0.6—

0.2—

l
() l

l

1

l
l

l
l
l-- I
l

I
I
I

I

I
I
I
I
I
I
l
I
I
I

I
I
I
I

I

IO-
R'

CL

KI-
ln I.O—
IX

O. I—

— THEORY 3.0 eV

DUR DATA 3.5----- GEH

3.3eV
HENN 3. I eV

50
SCATTER I NG

I I

Ioo I 50
ANGLE (e)

FIG. 2. ed values of If ~Measured /o(e) versu 8

h

s for an

lues from th
~ e ~ s and da

ef. ill f
e work o

shed
Karule and

ars represent 1
e energy, res

ing stat'st'i pcs of th
t 1 tand dd eviation '

he
ent of I'' [e seeE. 5

0.0 I

0 30
I I I I I

60 90 I20 I 0
ANGLLE (DEGREES)

FIG Measurred values of the elasticic scattering

and Wilmers.

e. ll). D
al f m the work of Gehenn

q ())

er values would f )'tend to o, with

g ng

creasing an 1 .ng e.

S g
s i y with in-

We haveW also measure
of elastical

ured the an 1
' a ly scattered

gu ar distributi
in a manner

two detecto

increase th

rs

was subst't
g rate a thick t

T

scatterin

ng arget

h b h
f'lt 1 ns system was r

aperture of

n edwasr
at the sool

we

y gul

126 .
u ar range from 30' to

Our data at 3 3
pared with theoretic

eV show
retical results"

isede e' as well a
t 1 1

relative
aues. ' 8'

diff t 1

e ordi at 8 of th
s section

t F
& P

urthermore
e in arbi-

tte'in 1g s q
er close

One c
and

agreement of our eour experimental
e enn and W'1'j

derson.

*Portions of th'is pao ' per are adapt de from a th esis sub-

diifferences whic po
j e

w ich do exist ex

or bars
ilmers wer

in e work of 6
re not publish

here is e
is ed.

Gehenn and

eneral ag e
s or both o(e) and tf i'

e close-cou li
IT(&) with

kop. A
th o of K

o theoretic
n angular s '

Peter-o Karule and
o the

re ical curve in
u ' relative t

a is clearl
), particularl y in the pos

t 60'

s 'f cant an u

y apparent in ther a ' edatafor I

SultS Of

up ing theor fou y or so-
because ofy arise b

n s ates used in the
sion Further cl

'
ns of this t

c ose-couplining com-

We ' e to

ssium would be val-

e are indebted toe to W. Raith

y of the hazards th ' in
us past

n . 1o ko 1 d
r s th ' in ott scat tering

sions with J 'oint Institute for
p ysics Visiting Fp si ' ''

ellow, B. Be
ry

400



Vol.UMR 29, NUMBER PHYSICAL RKVIK%" LETTERS 14 AU@USV 1972

mitted by D. Hils to the University of Colorado in par-
tial fulfillment of the requirements for the Ph. D. de-
gree in physics. The work was supported in part by the
National Science Foundation under Grant No. GP-17174
to the University of Colorado.

)Present address: Physics Department, University
of St1rl1ng, Stirling, Scotland.

)Joint Institute for Laboratory Astrophysics Visiting
Fellow, 1967-1968; pxesent address: Physics Depart-
Inent, University of Stirling, Stirling, ScotlRnd.

&Staff membex, Laboratory Astrophysics Division,
National Bureau of Standards, Boulder, Col. 80302.

P. G. Burke and A. M. Shey, Phys. Hev. 126, 163
(1962); H. Kleinpoppen, Phys. Rev. A 3, 2015 (1971);
B.Bedex'son, Comments At. Mol. Phys. 1, 41 (1969}.

H, . E. Collins, B. Bederson, Rnd M. Goldstein, Phys.
Rev. A 3, 1976 (1971).

H. Friedburg and %. Paul, Natux'wissenschaften 38,
159 (1951).

J. A. Simpson Rnd C. E. Kuyatt, Rev. Sci. Instrum.
34, 265 (1963).

J. A. Simpson and L. Marton, Bev. Sci. Instrum. 32,
1283 g.961}.

N. F. Mott, Proc. Roy. Soc., Ser. A 124, 425 (1929),

and 135, 429 (1932).
J. Van KIInken, Nucl. Phys. 75, 161 (1966).
%. Eckstein Institute fear Plasmaphyslk Garch111g

bei Munchen Report No. JPP7/1, 1970 (unpublished).
D H. Hllsq Ph. D. theslsq Un1vex'slty of Colorados

1971 (unpublished) .
'OPreliminary versions of these results have been men-

tioned by D. Hils, M. V. McCusker, and S. J. Smith,
Bull. Amer. Phys. Soc. 16, 72 (1971}.

"The theoretical values of IfP/o and o (8) used in this
paper have been computed by us from reactarice matrix
elements calculated by Karule and Peterkop using a
two stRte close coupling approximation. For pRrtlRl
waves E =0 through I, =3 these matrix elements are pub-
lished inAtongje Colgajons III; edited by V. Ia. Veldre
(Latvian Academy cf Sciences, Riga, 1965) [Transla-
tion TT-66-12939 available through SLA Translation
Center, John Crerar Library, Chicago). For partial
waves / =4 through E =8 the matrix elements were re-
ceived by private communication from Karule and
Pete rkop.

%. Gehenn and M. %ilmers, Z. Phys. 244, 395
(1971).

D. Moores and D. Norcross, to be published.

E»«n«of Mo«-Mode Couplinp and Nonlocal Shear Viscosity ln
»inary Mixture near the Consolute Point*

C. C. Lait and S. H. Chen
¹clsstZsgtass Y&'lg D8'Pgf'ts18st~ MQ88clckmsetts IastNNts Of Tscfgsotogy~ Qgypgbyjggs, ~gssgcjggsstts 02139

(Received 24 May 1972)

Linewidths of Hayleigh scattering from a binary liquid system of n-hexane plus nitro-
benzene have been measured at two fixed scattex"ing angles over a temperature range
such that e= (T-T )/T, extends from 10 to 10 . The ratio of the linewidths at two
angles as a function of the correlation length $ have been compared with recent self-con-
sistent mode-mode coupling calculations of Kawasaki and Lo. The. theory takes into ac-
count the nonlocality of shear viscosity near the critical point, and the data clearly es-
tablish the predicted effect in the critical region.

It has been well established both theoretically'
and experimentally~ that the decay rate I", of the
concentration fluctuation C~ deviates appreciably
from the hydrodynamic expression K'D as one
approaches the critical region as defined by
K$ ~ l. In fact, an explicit K$ dependence of the
diffusion coefficient D(K$) has been given by Ka-
wasaki as

r„=K'D(Kg) = (O, r/e-sq+)] -'K, (K]),

K,(x)=4I1+x'+(x'-x ')tan 'x)

and q* is loosely called the "high-frequency"
shear viscosity. Experimental work of Berge
et aE.3 indicated that with reasonable choices of

gc and v in the defining equation $ = gee ", rl* could
be taken as a constant in fitting the Hayleigh line-
width data over the entire temperature range
covered. Since then there have been new measure-
ments4 indicating that far away from the critical
point g* approaches g(T), the hydrodynamic shear
viscosity, and near the critical point it deviates
from g(T) but not entirely temperature indepen-
dently, Based on these observations, Kawasaki
and Lo' recently made an attempt to clarify the
meaning of g* by solving self-consistently the
coupled equations of C~ and V„ the transverse
local velocity fluctuation.

Far away from the critical point, the time de-
pendence of these two fluctuating modes assumes
the hydrodynamic expression C» (t) -exp(- K'Dt)
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