
VOLUME 29, +UMBER 6 PH Ysr CAr. RK Vl E W Z, Z ITERS 7 AUGUsT 1972

Using guage invariance, a formulation analogous
to the Ginzburg-Landau theory of superconducti-
vity can be constructed and is presently under
study.

Here we have emphasized the existence of a cri-
tical density p, for the formation of an infinitesi-
mal but macroscopic pion field condensate. In a
more complete treatment, we anticipate modifi-
cations due to S-wave interactions~ and also shifts
of the nucleon energy associated with the noncon-
densate virtual-pion interactions. This latter ef-
fect is probably the most important. The modifi-
cation of the nucleon propagators produced by the
m condensate will reduce the binding energy as-
sociated with virtual pion exchange. At small
values of the condensate density this change in
the nucleon correlation energy will appear on the
right-hand side of Eq. (j.5) as a positive term pro-
portional to xh'. This will shift the critical den-
sity to higher values. A similar effect is well
known in strong coupling super conductors7 where
the superconducting condensation energy is less
than that predicted by the original BCS theory
due to the interference of the pair condensate
with the normal electron correlation energy.

It is a pleasure to acknowledge many useful dis-
cussions with R. F. Sawyer.
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Here we have neglected the repulsive S-wave inter-
action because we expect the P-wave part to dominate
for the relevant pion moment of order 7t. In addition,
residual P-wave attractions, beyond the baryon pole
terms already taken into account by our Hamiltonian
Eq. (1), should cancel part of the S-wave repulsion. It
may be that the remaining S-wave effects increase the
critical density for pion condensation above that calcu-
lated here, but we believe that the nature of the transi-
tion can be understood from our simple model. Fur-
thermore, as the proton concentration increases, the
S-wave contributions decrease. Here, for clarity, we
treat the nucleons in the nonrelativistic limit, which is
a reasonable approximation over the density region of
major interest to us.

Actually, at a finite pion concentration the minimum
energy occurs for a value of K different from that as-
sociated with p~. Details of this wiQ be reported else-
where.

~To complete our solution, the constraint Eg. (19) im-
plies that 2(p~-pt') =(us(p/p, ) '(1 —Sc*)/(I-x*) and
the splitting condition between the q and y states be-
comes (p/p~)/I-x*)- (2p/(u~), which is satisfied for
p- pc

It may be that a standing & condensate of the type
used by Sawyer is favored. In this case p, is increased
by ~2 and one must of course take into account the Cou-
lomb-interactions associated with local charge density
deviations.

D. J. Scalapino, in Slpereondletieity I, edited by
R. Parks (Marcel Dekker, New York, 1969), Chap. 10.
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In theories with spontaneously broken gauge symmetries, various masses, or mass dif-
ferences may vanish in zeroth order as a consequence of the representation content of the
fields appearing in the Lagrangian. These masses or mass differences can then be calcu-
lated as finite higher-order effects. The mechanism for cancelation of divergences in
second-order fermion masses is described explicitly. The weak interactions play an es-
sential role in canceling infinities in electromagnetic masses.

The idea that electromagnetism is responsible
for mass differences within isotopic multiplets,
and possibly also for the whole mass of the elec-
tron, has historically proved very attractive but
not very fruitful. In the context of perturbation
theory, the trouble is that when some mass or
mass differences vanish in zeroth order, there

generally is either some symmetry in the theory
which keeps the mass or mass difference zero in
all higher orders (as in electrodynamics with
zero electron mass), or else the higher-order
corrections turn out to be infinite (as for the neu-
tron-proton mass difference with equal zeroth-
order masses). In renormalizable theories such
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m =m, +r,.(cp,.)„ (2)

where mo is the bare mass matrix which must ap-
pear in the original Lagrangian unless forbidden
by G. We may suppose that the g„and y,. furnish
representations Dz and Ds (perhaps reducible)
of G, and the (I',)„are then proportional to the
coefficients which couple the various components

infinities may be eliminated by introducing coun-
ter terms in the Lagrangian, but the masses are
then free parameters.

The recent development' of renormalizable uni-
fied theories of the weak and electromagnetic in-
teractions based on spontaneously broken gauge
symmetries offers us a way out of this impasse.
Consider some invariance group G [such as local
SU(2), SU(2) SU(1), etc. , but possibly including
discrete symmetries] which forbids the appear-
ance of a particular mass or mass difference
term in the Lagrangian. Imagine G to be spon-
taneously broken down to some subgroup S of un-
broken symmetries (such as electromagnetic

'

gauge transformations) which allow the appear-
ance of this mass or mass difference for the
physical particles. Suppose, however, that even
after the spontaneous breaking of t" down to S,
the zeroth-order contribution to this mass or
mass difference vanishes for all possible G-in-
variant and xenormalizable Iagvani, ians con-
structed from a given set of fields belonging to
given representations of G. Then the higher-or-
der corrections to this mass or mass difference
must be finite, because there are no counter
terms available to absorb ultraviolet divergences
in these corrections, so that any infinity here
would be inconsistent with the renormalizability
of the theory. 2

Let us see how this works for fermion masses.
If a mass or mass difference term in the Lagran-
gian is forbidden by the underlying invariance
group G, then the only way it can appear in. zeroth
order is through the vacuum expectation values
of a set of spin-0 fields p, , which are generally
inversely proportional to coupling constants. The
only renormalizable interaction of a set of spin-&
fields („with the p,. is of the Yukawa form

I-~ = 0'r, l";4-V;, (1)

where (I",)„„area set of matrices, proportional
to one or more coupling constants. (Without loss
of generality, we shall take the p,- to be Hermi-
tian, so that y4I',. is Hermitian. Note that I',. may
contain terms proportional to y, .) The zeroth-
order fermion mass matrix is then

of D~ to D I; *DE. The bare-mass matrix mo
must be invariant under 6, so it is absent unless
D~*SD~ contains the identity representation.

How can zeroth-order mass relations arise in
such theories? In general, any possible mass
matrix m which is invariant under the unbroken
subgroup S may be expanded as in Eq. (2) in a
series of S-invariant vectors belonging to various
irreducible components of D~*SD~. Further,
the vacuum expectation values (p,.), are usually
unconstrained (except by S) if we allow free vari
ations of the constants in the Lagrangian. Hence,
no zeroth-order mass relations (except S invari-
ance) are expected if there is a scalar-field mul-

tiplet for each irreducible component of D~*SD~.
However, if there are no scalar fields in the
theory which transform according to one or more
of the irreducible representations in D~*SD~
(and if these are representations which contain
S.-invariant vectors), then the absence of these
representations in Eq. (2) will generate one or
more zeroth-order mass relations. Such mass
relations are not mere consequences of the un-
broken symmetries of the theory, and finite cor-
rections will generally appear in higher order.
Thus, apart from possible "accidental" constraints
on (y,.)„ it is the representation content of the
scalar multiplet appearing in the Lagrangian
which determines the Pattern of broken fer mion
mass relations.

To take an extreme case, we might suppose
that none of the scalar fields in the theory belong
to any of the irreducible components of Dz*D~,
so that there are no Yukawa couplings at all. The
zeroth-order fermion masses then arise only
from the bare mass matrix mo, and are therefore
equal within irreducible representations of G.
However, the vacuum expectation values of the
scalar fields that do appear in the Lagrangian
will give the vector gauge bosons a 6-noninvari-
ant mass matrix, so that emission and absorption
of virtual gauge bosons can produce finite G-non-
invariant fermion mass splittings. Just such a
model has been considered by 't Hooft, ' and in-
deed, he finds a finite fermion mass splitting of
second order in the gauge coupling constant. In
't Hooft's model the Yukawa couplings are forbid-
den by a ref1ection symmetry A, under which all
fermion and vector fields are even, and all sca-
lar fields are odd. (This symmetry was not ex-
plicitly stated by 't Hooft, but it is implicit in his
Lagrangian. ) The equality of the zeroth-order
fermion masses can thus be attributed here to
the absence of scalar fields even under B.
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Georgi and Glashow' have considered quite a
different model, in which one of the scalars
which could have a Yukawa coupling is absent,
and in consequence one of the fermions has a
vanishing zeroth-order mass. This "electron"
picks up a mass of second order in the Yakawa
couplings, which is found to be finite.

.The above models are useful only as illustra-
tions, but it is not difficult to construct a semi-
realistic model of the neutron-proton mass dif-
ference along these lines. Consider an SU(2)
)3 SU(2) )3) U(1) gauge group with generators T~,
T» and F, the charge being given by T~3++g3
+ Y/2. The left- and right-handed nucleon fields
have TI,=2 &a=0 F=+1 and TI.=O, T~=&, F
=+1, respectively. In general, Yukawa couplings
would be possible here for two independent Her-
mitian scalar fields with TI =T~ = » Y =0, so if
we suppose that the theory only has 0p such
field, we have a zeroth-order mass relation,

which requires equal nucleon masses. In order
to break the gauge group down to electromagnetic
gauge invariance, we may introduce another sca-
lar multiplet, with T~= &, T~=O, 7=+1, and al-
low all neutral scalar-field components to have
nonvanishing vacuum expectation values. The
theory then contains six heavy intermediate bo-
sons (two each with charges +1, 0, -1) and a
massless photon, but if we assume that the lep-
tons all have T~ =0, then no gross conflict with
the known properties of the semileptonic strange-
ness-conserving weak interactions need arise.
A finite neutron-proton-mass difference is ex-
pected to arise in second order.

Although the finiteness of the corrections to
mass relations in such theories rests on very
general considerations, it is of interest to see in
detail how the divergences will drop out in actual
calculations. We consider a general renormaliz-
able and gauge-invariant Yang-Mills Lagrangian

Here (t~)„and (8 ),, are the matrices representing the Lie algebra of G on the fields g and y, re-
spectively; A ~" is the gauge vector field; F„""is its gauge-covariant curl; and F(y) is an arbitrary
G-invariant quartic polynomial in y. (Our choice of kinematic terms here requires that t„ is Hermi-
tian; 8 is imaginary and antisymmetric, and the structure constants are totally antisymmetric. The
gauge coupling constants are included in t, 8, and in the structure constants. The matrix t may
contain terms proportional to y, .) The G invariance-of the Yukawa coupling requires

[f, 'y I;f +(8 ),gy I, =0 (4)

We choose to work in the "unitarity gauge, " in which the field components y,. corresponding to Gold-
stone bosons are absent:

The zeroth-order vector-boson mass matrix is then

(5)

Now, we are only interested here in corrections to the mass matrix which change its representation
content. In particular, higher-order effects will force us to renormalize the coupling constants in I,,
and will change the values of the {p,)0, but these corrections will not change the representation con-
tent of I",.(y,.)0, and therefore cannot affect the mass relations which arise in zeroth order from a
specification of the representation content of the fields. The only one-loop diagrams which need be
taken into account here are those in which a gauge vector boson or a scalar boson is emitted and ab-
sorbed from a fermion line. A straightforward calculation gives the self-energy matrix here as

M is the zeroth-order mass matrix of the scalar bosons, and II is a projection matrix, which elimi-
nates Goldstone bosons from the sum over scalar-meson fields. Inspection of Eqs. (5) and (6) shows
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that

(8)rt, , =&,, +(&„(y),); V.s '(() sQ». ),'
In calculating the mass matrix from (7), we may recall that a term in Z( p) with a factor ip~y +m on
the extreme left or right will induce a fermion-field renormalization, but cannot shift the poles of
[Epoxy +m Z(—p)] ', and hence may be dropped. With this understanding, we find that the divergent
parts of Z(p) consist of a quadratically divergent term Q arising from the k„k„ term in (7),

(9)

plus logarithmically divergent terms L„L„L„L4arising respectively from the g„, and k„k~ terms
in the vector propagator and from the 6,, and 11,,-6,, terms in the scalar propagator. Equations (2),
(4), (6), and (8) imply that L, and L, cancel. The remaining terms turn out to have the matrix struc-
ture

y4Ly +y4™nyy4 o. cxs a ny4 i

y L,~ y, I',y,rny4I', , y4my4I", .y l",, y4I,.y4I',.y4m.

(10)

(Details will be published elsewhere. ) Since 7;m
is a linear combination of matrices y4I',. satisfy-
ing Eq. (4), it is easily seen that (9), (10), and
(11) are linear combinations of the same ),I",.
matrices. Thus, the divergent part of Z(P) has
the same representation content as the zeroth-
order mass matrix, and so cannot enter into the
corrections to the zeroth-order mass relations.

As a practical matter, we expect that scalar-
boson exchange will be much smaller than vector-
boson exchange, because Eqs. (2) and (6) show
that ratios of typical elements of I',. and t are
of the same order as the ratio of the fermion
masses m to the vector-boson masses p. In ad-
dition, once we extract the quadratic divergence
(9), the k &k, term in (7) is smaller than the g &,
term by a factor of order (m/p)'. (This explains
how it is possible for the. logarithmic divergence
in this term to cancel part of the logarithmic di-
vergence in scalar exchange. ) Thus, if m «p,
the corrections to zeroth order ferm-ion mass-
xelations may be calculated taking into account
only vector-boson exchange, and dropping the
k „k term in the vector propagator.

However, matters may not be so simple. It is
attractive to suppose that all dimensionless cou-
plings of elementary scalar and vector bosons
are of order e, in which case the zeroth-order
fermion masses would be of the same order as
the intermediate vector-boson masses p, , say
roughly 50 GeV. It is entirely possible that there
exists a class of such "super-fermions" (and in-
deed a number of interesting models4 require
the presence of heavy leptons or quarks). In this
picture 'there must be zeroth-order relations

!
which require the masses of the observed leptons
and hadrons to vanish. Second-order weak and
electromagnetic effects would produce masses of
order a p, a few hundred MeV, but the electron
mass must for some reason remain zero until
fourth order.

In any case, one lesson definitely emerges from
this work: It is pointless to try to evaluate elec-
tromagnetic mass differences without taking weak
interactions into account. In particular, it is
only when we sum over all gauge fields A

&
in

(10) that the logarithmic divergence drops out of
the corrections to mass relations. (However,
this does not introduce parity violations of order
n, because y, terms in the mass matrix can al-
ways be eliminated by redefining the fermion
fields. ) Perhaps the weak interactions also in-
validate various one-photon-exchange theorems,
such as the Sutherland theorem for g-3m and the
hI» 2 rule.
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