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tailed balance, we find

o& „(back) = 0.1 mb.

Because of the assumptions made, this result is
a very approximate estimate of o(back). Howev-
er, the cross section actually measured is suffi-
ciently close to this value to suggest that the da-
ta for "Si establish qualitatively the relationship
between correlations and background cross sec-
tions developed by Lane.

In summary, the simultaneous observation in
"Si of localized neutron and radiative strength,
strong partial-width correlations, and a back-
ground cross section observable through its in-
terference effects may be attributed to the pres-
ence of an isolated common doorway state con-
sisting of a 2P„, neutron coupled to the "Si ground
state. If this explanation is correct, it poses
further questions. The observed E1 strength is
distributed over an -500-keV interval, a substan-
tial fraction of a single particle width. Yet the
observed photon and neutron strengths are only
& 10/o of the total expected for the 2s,i, -2P,I,
transition. This suggests that the strength of
this transition either is fractionated and spread
over a large region of excitation or that the tran-
sition is inhibited fox' some reason. Further ex-
perimental study of p„, strength in "Si would

clarify this point.
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It is argued that at some density, estimated at about 1 baryon/F~, superdenae nuclear
matter will make a transition to a phase of approximately equal numbers of protons, neu-
trons, and & particles, the latter condensed in one or two plane-wave states of momen-
tum ~ 170 MeV/ cThese conclusions are based on the conventional theory cf the pion-
nucleon interaction.

The properties of superdense rnatter in neu-
tron-star interiors have been estimated by sev-
eral authors, using various approaches. ' ' How-

ever, these approaches have all begun from a
simple basic picture for the matter, one in which
the matter consists (for densities up to about 1

baryon/F') of a Fermi gas primarily composed of

neutrons, with some protons and electrons, which
interact with each other through the standard
nucleon-nucleon potentials.

As densities grow larger than nuclear densities

(0.15 baryons/F'), the assumptions of these mod-
els become shakier, Such phenomena as large
contributions from many-body forces, or an
exotic ground state, or real mesons as consti-
tuents of the rnatter, all become more likely at
higher densities.

As an example, let us consider the possibility
of a condensed phase of n particles neutralized
by an equal number of protons, the system also
containing an equal number of neutrons. The in-
teractions of a m of moderate momentum (0.5m, c
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&k &1.5m, c) in a medium with p~ = p„will be

dominated by attractive P-wave effects. ' The op-
tical potential of Auerbach, Fleming, and Stern-
heim' for a m in nuclear matter yields the follow-

ing dispersion relation for the n within the nu-

cleus (p is in baryons/F'):

k'(1 —6p)+0.7pni, (u+m„'= ~'.

At a density only slightly greater than nuclear
densities, there will be a solution with v =0 to (1)
even for moderately low k, apparently indicating
the possibility that the proton charge can be neu-
tralized with pions, at no cost in pion energy.
However, the phenomenological optical potential
is not a correct starting point for discussing our
new ground state. The nucleon pole graphs,
which are responsible for the greater part of the
P-wave scattering lengths underlying the k'p
term in (1), have an energy denominator the var-

~

iation of which is not taken into account in (1).
This denominator becomes very small for smaIl
~, which is exactly the region of interest in the
present problem.

In the present note we report some considera-
tions which we believe point in a more definite
way to the likelihood of a m condensation at some
density. The interaction used will be unrealistic-
ally simplified, but the argument will. be free
from the perturbation-theoretic problems of the
optical-potential approach, and it will correctly
take into account the meson-theoretic sources of
the P-wave attraction discussed above. Consider
first a Hamiltonian for free neutrons, protons,
and pions, IJ„ to which is added an interaction
term IJ, giving the coupling of two modes only of
the m field to the neutron-proton system. One
mode has momentum k in the z direction; the
other has momentum —k in the z direction, '

IJ=H, +—,&,,Q[p (q —kz)o,n(q)a~(kz) —n~(q)o, p(q —kz)a(kz)

p~(q—+kz)o,n(g)a ~(- kz) +n t(Q)o, p (q+ kz)a t(- kz)] . (2)

Here nt(q), n(q), p~(q), p(q) are the creation and annihilation operators for neutrons and protons of mo-
mentum q, which we shall take as nonrelativistic except in the computation of kinetic energies. a„
and a~ are the respective creation and annihilation operators for m particles. The parameter f = 1.1
=[4m(0, 088)] ~'. At this stage we are leaving out all interactions except with the mesons of the antici-
pated condensed phase.

Now we ask for the ground-state energy of a system with baryon number N in our volume V, subject
to the constraints of exact charge neutrality and no macroscopic currents. We distinguish two types
of states, of which state I consists of all free-neutron levels filled up to the Fermi momentum k F ap-
propriate to the density p =N/V. The expectation value of the Hamiltonian in this state will be denoted
E(k F). In the limit of infinite volume E(k F) is an actual eigenvalue of H.

State II will have to be described at length; it consists of a superposition of states of different num-
bers of protons, neutrons, and n 's which we individually denote by

, P) = ~m, P's(&), m, w 's(-kz), (N/2 —m, )n's(i), o;

m P's2(&), m2m 's(kz), (N/2 —m2)n's(t), p),

Here the vertical arrows denote the z component of baryon spin; n and P denote various ways of as-
signing protons and neutrons to plane-wave states. We make these assignments in the following way:
The K/2 —m, spin-up neutrons occupy states up to the k F level (of which there are N/2) in any way,
the different ways being distinguished in the label +, For the spin-up protons we consider a set of
states of momenta (Q+kz}, where g runs over the same basic Fermi sphere that we used for the neu-
tron states. We now fill only those spin-up proton levels corresponding to its that were not used for
the spin-up neutrons (this exactly uses up the m, spin-up protons).

For the spin-down neutron states we use the same states (q} as for the spin-up neutron states, the
exact assignments being described by the index P. For the spin-down proton states we use the set
1q —zk} again avoiding all the q's which were utilized in the spin-down neutron sea. .

The phases of these states are defined with respect to some standard ordering of the modes in the
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basic Fermi sea, q, ), q, ~, q, ~, q, ~, q, t, ~ ~ ~, as

!m„n;m„p) = ~ ~ [p"(q,. +kz, t) or n t(q, , & )] ~ ~ [pt(q, +kz, &) or

n (q„&)][pt(g,—k, &) or nt(Q„&)][pt(q, +kz, t) or n~(Q„&)]

xa:(kz) 2a (-kz)"i!0), (4)

where the pt and nt are the creation operators for protons or neutrons in the indicated modes. In (4) it
is made explicit that for every mode, q-spin, either a neutron state is occupied or a proton state is
occupied in the displaced mode f+ kz, but not both.

Now we form the normalized state:

!(»)=X Q (i) f(m, )f(m, )!m„o;m„p),

E'(k F) here is the nucleon rest plus kinetic energy
which differs from the energy of case I, E(k F),
by the effects of the displacements of the proton
Fermi sea. We have

E '(k F) & E (k F ) + 2Nk'/2~, (7)

the equality holding in the nonrelativistic limit.
The second term on the right-hand side of (6)

comes from the interaction term in (2). Its sign
can be changed freely by changing phases in the
wave function [as can be seen by considering the
transformation P(q) --P(g) in (2)]. The third

mi, m 2, , 5

where 0 &m„m~ & N and the function f(m) (a) is
peaked around m= &N, (b) varies negligibly for
b, m= 1, and (c) in the limit of large N becomes
negligible for Im ,'N I)—v N—. An example would

be f(m) =exp[- (m —,N)2/vN—].
A rough description of Ig») in words is as

follows: A state of approximately N/2 protons,
N/2 neutrons, and N/2» 's, which is a superposi-
tion of states in which only one is occupied of any
two corresponding states in the (displaced) pro-
ton Fermi sea and in the neutron sea. All possi-
ble such states with N~ =N„are superposed with
equal weight, with, however, a cutoff imposed
when the number of protons becomes very differ-
ent from the number of neutrons. The phases
have been arranged so that every term in the ex-
pectation value of IJ& has the same sign.

We can show that in a certain limiting sense as
N-~, V-~, N/V-const, the state lg») is an
actual eigenstate of the Hamiltonian. But, rather
than get preoccupied with the mathematics of
such limits, we shall note that the expectation
value (g» (Ill(») gives, in any event, an upper
bound on the ground-state energy. We retain only
terms which contribute a finite amount of energy
per particle in the N-~ limit:

(&»!P!P») =E'(k, ) — m, i, +2 co, . (6)
yk MX

! term on the right-hand side of (6) is the meson
energy.

Writing N/V as the total baryon density p, we
see from (6) that for low densities or small coup-
ling the type-I state (no mesons) will have the
lower energy, but for

(8)

we find ($»IPI(») is less than the energy of the
type-I state. The minimum value of the right-
hand side of (8) is 1.73~m, at k = 1.2m, . Thus
for p )3m„'= 1 F ' we predict a ground state of
the type II with the meson momentum given by
k = 1.2m~.

At a density of 1 neutron/F', and in the absence
of interaction (except for the weak interaction) a
free-neutron gas would have lowered its energy
slightly by making a transition to a conventional
state with about 10/0 protons, 10%%uo Z particles,
and 80% neutrons. ~' However, at a very slightly
higher total baryon density our p, n, ~ phase
would again win out. Furthermore, if we want to
include hyperons we can play the same game with
Z A states that we already played with n and p
states and end by achieving still lower energies
in a condensed pion state.

The state (3) (along with an infinite number of
degenerate variants) has the lowest energy of
any condensed pion state we have found which
does not have a huge macroscopic electromagnetic
current density. If we take only one pion mode,
-kz, say, and we displace our spin-down proton
states by +kz [instead of by -kz as in (4)], we
can gain an additional factor of /2 in the negative
term on the right-hand side of (6), pointing to an
onset of the condensed state at p= —,

' F ', ' How-
ever, this state has an immense current flowing
in the magnetic energy will preclude its formation.
magnetic energy will preclude its formation.
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Next we briefly consider the question of inter-
actions. It can be argued that the energies aris-
ing from nucleon-nucleon interactions depend
mostly on the total density of nucleons and should
therefore not differ greatly in the' pure neutron
state I and in the exotic state II at a given total
baryon density. In the state II we should also
take into account interactions of the m particles
with the nucleons, beyond those interactions in-
cluded in (2), and with each other. The question
of how much of the observed attraction felt by
m in nuclear matter is already taken into account
in (2) and is a difficult one in our opinion. How-

ever, there would seem to be at least some re-
sidual attraction even after those Born terms
implicit in Eq. (2) have been removed. As for
the pion-pion interactions, the I =2 mw 8-wave in-
teraction is thought to be repulsive, but quite
small. " Thus, we come to no definite conclusion
as to whether the formation of a condensed m

phase will be encouraged or discouraged by inter-
actions which have been omitted in (2).

If a condensed m phase should in fact occur in
neutron star matter, the consequences would ob-
viously be far reaching. If we calculate the pres-
sure from our formula (6) using

Y dN N

and evaluate at p= 1 F ' (our guess for the onset
of the condensed phase), we obtain only 20% of
the pressure of the free Fermi gas at that den-
sity. The interactions could do much to restore
the pressure; however, some reduction would
seem certain.

In addition to the large effects on the equation
of state, the existence of the condensed phase
could give rise to many strange phenomena de-
pending on the locally defined directionality of
the matter, provided by the wave vector of the
pion field.
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