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An analysis is made of the possible structural transformations in the self-consistent
phonon approximation, in a mean-field approximation, and in an exactly solvable model.
The character of the transition is found to depend both on the theoretical treatment and
on the parameters used in the model Hamiltonians.

Several recent studies' ' of displacive transi-
tions have used closely related model Hamilton-
ians which can be represented schematically by

H=K+V, +V,.
I-Iere V4 represents a positive, quartic, short-
range interaction, while the harmonic V, term in-
cludes both a short-range interaction and a long-
range dipolar interaction. Since the lattice is
stabilized by the quartic term, the force constant
matrix in V, need not be positive definite.

In Refs. I and 2, a mean-field approximation
(MFA) was used, and a second-order displacive
transition was found; in Ref. 4, the self-consis-
tent phonon approximation (SPA) was used and a
first-order transition was found. It has recently
been suggested' that long-range fluctuations are
responsible for the first-order character of the
transition in SPA, whereas the MFA yields a sec-
ond-order transition because these fluctuations
are effectively cut off. Unfortunately, Ref. 5 is
completely qualitative and does not indicate
whether the transitions are found in the same
temperature regime in which long-range fluctua-
tions are important.

Reference 5 used a variational treatment of a
Hamiltonian of the form (1) containing a single

A =—Q —coth
1 1 pu. kBT 1

2N, &, 2 M (4)

The difference between the MFA and the SPA
is the way in which 4 is evaluated. The MFA
uses what we will call the flat-spectrum approxi-
mation and replaces ur, in (4) with a constant fre-
quency 0= [&u,'+v(0)]'~' so that

AMFp=k»T/[Mo +v(0)].

collective degree of freedom of optic phonon char-
acter. As in Ref. 4, a displaced oscillator form
was used for the trial density matrix. Minimiza-
tion of the free energy yielded

u), '=0,'- v(q) +SyA+3yq, '
for the optic-mode frequency and

Q,[n,' v(O) +3-yA+yq, '] =O

for Qo, the order-parameter conjugate to the q
=0 optic mode. The bare frequency 0, and the
quartic constant y are associated with the intra-
cell short-range interaction, and v(q) is the
Fourier transform of the harmonic intercell in-
teraction v».. The correlation function A = ((Q,
—Q,)(Q, —Qo)) depends implicitly on the mode
frequency cu, via the relation
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a, = ——,
' x'd'/dx'+4m'+4m'- uQ)x,

H = ——,
' x'd'/ck' —4c'+4m'- o.(x)x,

(6a)

(6b)

where the term —u(z)x is the result of treating a
bilinear interaction term in a molecular-field ap-
proximation. The relationship to (1) is through
the symmetry-breaking term introduced by the
flat-spectrum approximation and the term n(z)x
Both n and v(0) are assumed to be positive. The
particles have unit mass and 5 is replaced by the
variable A, . Thus a possible displacive transition
will be driven by A. and zero-point energy will.

take the place of thermal energy.
The Hamiltonian (6) contains the essential phys-

ics of (1), but is exactly solvable by numerical
methods. Thus we believe that the exact solu-
tions of (6) are a reliable guide to the results of
an exact solution of (1) if such were possible.
Also, one can treat (6) approximately by using a
trial ground-state wave function of the displaced-
oscillator form 4, = exp[- —,

'
g(x +x,)'] with g and

xo chosen to minimize the ground-state energy.
This is analogous to the displaced-oscillator den-

sity matrix used in Ref. 4. We will call the two

treatments of (6) the exact and variational treat-
ments.

These treatments, together with further inves-
tigations of the SPA and the MFA, have provided
us with a much clearer picture of the relationship

The SPA, on the other hand, evaluates the sum in
(4) exactly. The MFA is equivalent to SPA with
the approximation vm. = v(0)/1V so that v(q) = 5(q)
xv(0) and &u, '=v, '+v(0), qg0. The flat-spectrum
approximation has another implication: One can
write Ql. vN. Q,Q,. v(0)Q, Q, Q,.(Q, /&) =Qp(0)
x (Q,i)Q „which introduces a symmetry-breaking
field in the Hamiltonian.

We have been studying' a model system of inter-
acting anharmonic oscillators described by the
Hamiltonians'

among the character of the displacive transition,
the theoretical method, and the parameters in
the model Hamiltonians. A summary of these re-
sults is given in Table I. The contents of this
table, as well as other of our most important new
conclusions, will be discussed in the points (a)-
(f) below.

(a) Since the Hamiltonian (1) is symmetric,
the state of lowest free energy must also be sym-
metric. Thus, any displacive transition which
is found ia due either to an approximation or to
the implicit introduction of a symmetry-breaking
term. The flat-spectrum approximation does the
latter. As an example of the former, the exact
solution of (6b) yields no transition for o. =0,
whereas the variational calculation yields a first-
prder transition for o. & 0. As will be seen in (c),
the transition for n = 0 is due to the restricted
form of the variational wave function as it is
readily shown that the properly symmetrized
function +~=4, ++ gives a lower energy when
@=0.

(b) The Hamiltonians (1) and (6) can each des-
cribe physical systems which are qualitatively
different. When the quadratic term is negative,
a physical picture is presented in which each
atom in the most symmetric structure is at a
classically unstable region of negative curvature~ hump. Hence, the system has built-in insta-
bility, and whenever the zero-point or thermal
energy can be made small enough to permit local-
ization of the particles in one of the wells of the
double minimum potential, a displacement is
likely to occur. When n =0, symmetry prevents
the distortion, but for any finite, arbitrarily
small n a transition ultimately occurs. There-
fore, in a real physical system, something should

break the symmetry and a distortion should oc-
cur. This is the physical picture of what we will
call an instability-driven transition. In addition,
if the symmetry-breaking term is short range

TABLE I. The values of the parameters in the model Hamiltonians (1) and (6) for
which transitions of a particular character are found in the SPA and MFA treatments of

(1) and the exact and variational treatments of (6) .

Character of
transition SPA MFA Variational

No transition

First-order

Second-order

np'- v (p)

002 &v (0)

Qp -v(p)

v(0) &200

np2&v(p) = 2np'

~=p (6b)
0&~-8 (6a)

Q &p (6b)
a &8 (6a)

0 & a - 8 (6a)

a-0 (Rb)

~ &8 (6a)
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and random, the possibility of an order-disorder
transition is introduced.

When the quadratic term is positive, the situa-
tion is quite different. The system is inherently
stable and a strong enough field to overcome the
natural stability must be imposed. We will call
this a field-driven transition.

(c) A first-order transition is found in the vari-
ational calculation of Ref. 4 because the trial
density matrix corresponding to the displaced
system is a better variational form than is the
symmetric one. We draw this conclusion because
we find that, when the variational treatment of
(6) predicts a transition, the exact ground-state
wave function is quite similar to 4s in the vicinity
of the potential minimum and that the energy de-
rived from the displaced solution differs from
the true energy (or from the energy obtained us-
ing 4's) by terms proportional to the overlap
(++ I @ )-exp(- gx'p'), which is numer ically quite
small, whereas the undisplaced energy and the
true energy differ by terms proportional to xo'.
Thus 4'„4',and 4~ are almost equally good
variational wave functions and all are superior
to the undisplaced wave function,

(d) Contrary to the conclusion of Ref. 5, the
transition found in Ref. 4 takes place at a tem-
perature which is sufficiently high that the effects
of long-range fluctuations can be completely ig-
nored. Reference 5 employed a Debye approxima-
tion to evaluate &spy as

3k BT ~(d, /(dDI(

(do (d n Pdp

where eD is some effective Debye frequency.
This shows the influence of the fluctuations as-
sociated with the soft mode on the behavior of the
intercell correlation function in the region where
Sco, «k~T, a behavior which can be noted in the
graphs of the correlation function in Ref. 3. How-
ever, the transition found in Ref. 4 took place in
the vicinity of 8'(dp-A'BT, ' where the behavior of
4MFq and &sp~ are similar. This is illustrated in
Fig. 1 where the behavior of these quantities as
functions of co,' is depicted. The plots show that
both are monotonically decreasing, convex up-
ward functions of ~,' with the same large ~p
havior. Deviations between the behavior of the
two occur only for h~, «k&T.

(e) Depending on the magnitudes of certain
quantities in (l), the MFA may give rise to a
first- or second-order transition or to no transi-
tion at all and the SPA may lead to a first-order
transition or to no transition. This can be seen

~Q = ( u
p

+ o
I%)

y (

= (--'~'+ u')/(3y (

2
CJ 0

FIG. 1. Graphical solution of Eqs. (2)-(4) in both the
SPA and the MFA. The solid curves represent plots of
4~FA and &spA versus 0 at a single temperature. The
points a and b are the limiting values of &spA and &~FA,
respectively, as 0 0. A solution with a vanishing
order parameter Qo can occur only at the point c, where
A=Qp /(3y), with Qp =v(0) —Qp .

from the low-temperature behavior of the cor-
relation functions as shown in Fig. 1. Here, 4spp
intersects the ordinate at 3k BT/(dp' with a slope
of —, whereas ~MFA intersects the ordinate at

k sT/v(0) with a finite negative slope equal to
—ks T/v(0)'. The dashed linear plots arise from
the coupled solutions of (2) and (3) for the two
cases Q, =O and Qpx0. The allowable self-con-
sistent solutions for b and m, ' are given by the
intersection of the dashed lines with the appro-
priate temperature parametrized curve of 4 ver-
sus rap'. Since db, spA/d((dp')- —~ as &dp'-0, the
SPA yields first-order transitions only.

The MFA, however, admits the possibility of
a second-order transition because d&Mp~/d((dp')
is negative finite at (dp= 0. The various possibil-
ities in the MFA are summarized in Table I.
One should particularly note that if Qp'&0 (which
is the case treated in Ref. 4) the transition in
MFA is always first order, just as in the SPA,
and that if v(0) ~Op', no transition occurs in
either the SPA or the MFA. Thus the MFA as
employed in Refs. 1, 2, and 5 does not unambig-
uously yield a second-order transition since
these calculations do not start from a well-de:-
fined model of the interatomic forces.

(f) The exact treatment of Eqs. (6) yields a sec-
ond-order transition or no transition. The varia-
tional treatment yields a first- or second-order
transition or no transition. Our exact numerical
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analysis of (6b) shows that for o. &0, a continuous
displacive transition will occur at some X, (n)
with A.,(o) an increasing function of o.. An inter-
esting feature of this instability-driven transition
is that the transition becomes increasingly sharp
as n -0. Thus, if this were used to model a real
physical system, a case could occur in which it
would be impossible experimentally to determine
that the transition was not first order. The re-
sults for (6b) are as shown in Table I.

In conclusion, a clearer picture of the transi-
tion found in Ref. 4 is now available. In the ab-
sence of a symmetry-breaking term there should
be no transition. In the presence of one (which
could be implicitly introduced through the MFA),
there should be a second-order transition. These
results are for an idealized model. In a real,
physical system, there should be at least a weak
symmetry-breaking term. Then, since the tran-
sition is of the instability-driven type (with the
instability of the Coulomb lattice providing an ef-
fective "hump" for the TO mode} there would be
a sharp second-order transition with almost a
first-order character. If this were accompanied
by, for example, a lattice distortion, the transi-
tion could be a real, first-order transition.

Thus, the first-order character of either the
MFA or SPA treatment of the instability-driven
transition should not be considered spurious, but
rather a strong indication of the inherent instabil-
ity of the system.
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amination of our results by W. J. Camp.
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Any quartic Hamiltonian with a single degree of free-

dom can be scaled to the form (6).
This is also the region where ABER is of the order of

the depth of one of the minima of the effective double-
well potential associated with the long-wavelength optic
mode.
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The half-life of Be has been measured to be (1.5+0.9)X 106 yr, a value in significant
disagreement with the previously accepted value of (2.7+ 0.4) &&10 yr We disc. uss sev-
eral implications of the revised half-life,

Cosrnogenic radionuclides having very long
half-lives can be useful dating tools in a number
of astrophysical, geophysical, and cosmochern-
ical problems. One of the most prominent of
such species is the nuclide "Be, which has sig-
nificant applications in studying the history of
cosmic rays, ' meteorites, ' lunar samples, '
marine sediments, ' and polar deposits. '

The generally accepted' half-life of 'cBe is (2.7
+ 0.4) &&10' yr, a value based on two separate ex-
periments carried out more than 20 years ago."
We have become interested in the question of the
accuracy of this number because of its impor-
tance in trying to "date" cosmic-ray ages. ' Al-
though we had no reason to suspect a large error

in the accepted value, we felt its widespread
use warranted an attempt to reduce the error
limits. While we have not yet succeeded in that
goal, we have found a value which is in strong
disagreement with the older number, and which
should have important implications in a number
of fields of study.

The two essential quantities in the determina-
tion of any half-life which is too long to be fol-
lowed directly are the decay rate and the number
of atoms of the decaying species. Usually the
former can be measured directly, while the latter
is obtained by a mass-spectrometric comparison
of the radioactive nuclide and a stable isotope.
The main problem with the second step is the
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