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The tricritical behavior of a classical three-well-potential model for two-component
systems (such as He -He mixtures) is discussed by using renormalization-group tech-
niques. The tricritical exponents and scaling fields are calculated for three dimensions.

A model for a two-component system with a tri-
critical point (such as in Hea-He mixtures) is
found to show molecular-field tricritical behavior
(apart from logarithmic corrections). The model
can be viewed as a generalization of the model of
Blume, Emery, and Griffiths (BEG).' It is solved
in three dimensions by using Wilson's approxi-
mate renorrnalization- group recursion relations. 2

The recursion relations were previously shown
to give nonclassical behavior for ordinary criti-
cal points. ~ The tricritical transition differs
from an ordinary second-order transition by the
existence of an additional density with critical
fluctuations. ' The tricritical scaling fields are
also evaluated. They are the field variables in
which the thermodynamic and correlation func-
tions are scaling invariant. "

We propose a model that exhibits a first-order,
second-order, or tricritical phase transition de-
pending on the value of an external nonordering
field g.' Let s(R) denote a classical Ising spin of
range -& s &+ at site R of a discrete cubic
lattice; and let 5 denote all nearest-neighbor lat-
tice vectors. Then we consider a system with
the Hamiltonian X/k~T = H=H-, „+H&„, in w-hich

the exchange-interaction term and the potential-
energy term are given by

H,„=J'Q R zs(R)s(R+ &), (la)

H, &
= —PR[r's2(R) +u's~(R) + v's'(R)] (1b)

with the coefficients r', u', and v' depending on
the temperature T, nonordering field g, and
strength of the tricritical interaction [compare
Eqs. (3) and (5)].

The A nsat~ for the potential-energy term IIp„
can be justified either by starting from a tricri-
tical Landau-Ginzberg forgo for H/s'I or by re-
placing the BEG spin-1 model for He'-He' mix-
tures' by a continuous-spin model with a spin-
weight factor. From both approaches one ex-
pects a tricritical transition to occur for some
H „consisting of the sum of three-well poten-po
tials at each lattice site R (in contrast to two-
well potentials for ordinary second-order transi-
tions'). In fact, the renormalization scheme
yields this result for the potential at the tricriti-
cal point (T,.g, ) as shown in Fig. 1. For fixed
g&g& the side wells of the potential dominate and
we expect the model to exhibit a second-order
transition at a temperature T,(g), whereas for
g &g, we expect a first-order transition at T,(g).
The three-well potential simulates the cornpeti-
tion between two densities, one of which is the
ordering density m as in ordinary critical phenom-
ena, and the other is an additional nonordering
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FIG. 1. Plot of the tricritical three-well potential
V& =Q&/v&, defined by Eq. (5), versus the reduced spin
variable z.

At a critical point the correlation length of spin
fluctuations becomes infinite, i.e. , small momen-
ta dominate, and the series Q~ is expected to ap-
proach a "fixed point" Q*(z) as p -~. All criti-
cal properties can be determined from the eigen-
functions and eigenvalues of Eqs. (4) linearized
about Q*(z).~'

We find a tricritical fixed paint Q,~ of the Ham-
iltonian Hc in Eq. (3) by starting from a set of
nonzero, initial constants r„u„vo«1. On ex-
panding the non-Gaussian terms under the inte-
gral in Eq. (4), we obtain by induction recursion
relations for the quantities r„u~, and v~, with

p )0. These equations can be solved for dimen-
sion d= 3. The solutions to order v~' vary slowly
with p and are small compared to 1, which indi-
cates their consistency. For large p the recur-
sion relatians yield to leading order '

density n. ' As in the BEG model, the densities
m and n can be represented by

Q (z) = v (z' —15z'+ 45z'),

v~ vo/(1 + 450vcp).

(5a)

(5b)

m =(s), n=1 —(s'). (2)

Thus, an ordering field contribution to the Hamil-
tonian (1) has the form H„=kg sR(R), whereas
nonordering field effects are included in the qua-
dratic term of Eq. (1b)

On expanding s(R+ 5) to quadratic order in 5,
replacing the R summation by an x integration,
and substituting s(x) = (d/qZ')"'z(x) (where d and

q denote the respective dimension and coordina-
tion numbers of the lattice), we obtain from Eq.
(1) a reduced Hamiltonian Ho of the general form~s

H = —jd'~[-'JW~ (x)l'+ Q (z (x)]] (3a)

Q~(z) = t~ z + up z + vp z + ' ' ', (3b)

with, for p =0, the initial values" ~, =d(r'/qJ' 1), -
u, = (d/qJ')'u', and v, = (d/qJ')su'.

We use the renormalization-group method to
discuss the tricritical properties of model (1) in

three dimensions. To calculate the partition func-
tion Z= Tr exp(H, ) near a critical point, Wilsonm

has introduced an integration scheme over shells
of successively decreasing momenta. At each
stage the form of the Hamiltonian is required to
remain invariant. In particular, the effective
Hamiltonians (3) for spin fluctuations of wave
vector lql(2 ~ (with p an integer) are determined

by the approximate recursion relations'

Q~„(z)= —2" ln[X, (2' "'z)/I, (0)], (4a)

f,(z) = 1'"dy exp[ y'--', Q, (z-+y)

—2Q~(z —y)] (4b)

The potential Q~/v~ is plotted in Fig. 1 and has
the form anticipated for a tricritical phase tran-
sition. In the limit p-~ the result (5) approach-
es Q, = 0, which we call the "Gaussian tricriti-
cal fixed point. "

We find that this fixed point corresponds to a
tricritical phase transition characterized by Aeo

relevant densities and leads to molecular-field
tricritical exponents (apart from logarithmic cor-
rections") in three dimensions. In contrast, the
Gaussian fixed point for ordinary critical points
gives molecular-field behavior in greater than
four dimensions, where it describes the critical
behavior even of non-Gaussian models. "3 The
evaluation of the molecular-field tricritical ex-
ponents and scaling fields for our model is sum-
marized below and leads to the results listed in
Table I.

The linearization of the recursion relations in
5Q = Q —Q,* about a fixed point Q,* leads to

6Q~+, (2"' 'z) = QQ, *)5Q~(z), with a linear opera-
tor I determined by Eqs. (4). For Q,*=0 the
operator X, reduces to ic defined by

I. Q (z)=2-" -'"J'"d s"

= 2 ' exp(» 8'/sz')Q~(z)

Here the last equality is obtained by expanding

Q, in powers of y and evaluating the integrals.
Hence, the linearized recursion relations (4a)
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7&3LE I. Tricritical exponents in the Gaussian approximation.

PA 1

(0, 1) Pg =1/4
(1, 0) ~, = 1/2 b

(2, 0) 1

v]j.d -x~,J

Dg =5/4
1 c

j,=1/2'

d/»„-1 2[1+»„—1/2&]
6]=5 q (}8

~n,~-2 '&n )=1
1/2 2

'The value p&
= 0 is enforced by the approximations made to derive

gqs (4)
"The exponents ~&, A.&, and p& mere defined in Ref. 1.
This result follows from the condition v&[d-»&sI =1; hence v& =1/2,

~ 4

4„&=l, and (a)&+A,&=1.

and (6) are equivalent to the eigenvalue problem~

We call the eigenfunctions ik) of this equation
scaling densities and the exponents j scaBng in-
dices of the system. All quantities are tricriti-
cal quantities; a subscript t is suppressed for
simplicity.

The solution of the eigenvalue problem (7) for
dimension d = 3 yields

Here H»+, denotes the Hermite polynomials (the
index l is restricted to l = 0, 1 and 0 is a positive
integer). Thus the degree of ik)» in s is 2k+i.
The scaling densities differ by their symmetry
properties. For example, Q» corresponds to
the ordering density m, ik),o to the nonordering
density n and simultaneously to the energy den-
sity. The quartic term in the potential-well mod-
el gives rise to a contribution to the scaling den-
sity Q~ in the Hamiltonian. This term competes
with the exchange term (la). Therefore, it deter-
mines the critical line and hence defines the tri-
critical crossover exponent y, .~ Both scaling
densities Q,o and Q~ are relevant, i.e., exhibit
critical fluctuations. This fact represents the
principal difference between the transitions cor-
responding to the tricritical Gaussian fixed point
(6) and the ordinary second-order Gaussian fixed
point. Hence the tricritical point can be charac-
terized as the simultaneous instability point of
the system to /zoo types of critical fluctuations.
Corrections to the molecular-field tricritical be-
havior due to scaling densities of higher order
(k &2) will be discussed in a separate paper. It
is found that the asymptotic tricritical form of
some thermodynamic functions is not a power
law but a power law multiplied by a fractional

power of a logarithm. ~3

The scaling indices j in Eq. (9) measure the
sensitivity of the system to fluctuations in the
corresponding scaling density Q. If Q(R) scales
like IRI " in the sense of the Kadanoff operator
algebra, '+ ' then the indices x and j are related
by j=d —x. Equation (9) and this relation yield
for d= 3 the tricritical exponents summarized in
Table I, where both their operator-algebra nota-
tion and Greek-alphabet notation is given. The
results agree with tricritical exponents that have
been calculated by conventional mean-field ap-
proximation. "' The exponents are independent
of the spin dimensionality, i.e., are the same for
an n-vector model. '3 All exponent relations fol-
lowing from a tricritical scaling theory' are sat-
isfied, for example, a, = A, /(5„,. —1)= 1 —h

&
and

L, =(2-j„,)v,. The exponents are also consis-
tent with the tricritical exponents found for Hes-
He' mixtures. Furthermore, we expect that for
the model the critical-line exponents o.,P,y,
are the exponents of the three-dimensional Ising
model. "

The concept of scaling fields was introduced in
a scaling approach to tricritical phase transition. '
It proves crucial for a scaling-invariant defini-
tion of the departure of a system from criticality.
(In general terms the problem is to define a ther-
modynamic field space with a metric determined
by the nature of the phase transition itself. )
From this viewpoint it is important to calculate
microscopically the scaling fields in which the
thermodynamic and correlation functions are
homogeneous functions. These fields are not
necessarily the experimental deviating fields,
for example, 5T =(T-T,)/T„0g=(g -g,)/g„etc.

Here we propose a method to calculate the
scaling fields. Writing the effective Hamiltonian
Ho of Eq. (2) in terms of the scaling densities
Q», we obtain

S

QP=O Fat k, O Qk, 0& (10)
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with the "fields" p. given by

/go = ~z(rp+6up+45vp)q(p)

pao =~(uo+15vo)~ iso = svo.(p) 1 (p)

By using renormalization-group ideas it has been
generally shown' that the thermodynamic poten-
tial of the system is a homogeneous function of
the fields p, defined by Eq. (10). These fields
variables are "conjugate " to the sealing densi-
ties Q. Therefore, they can be identified with
the scaling fields introduced in the tricritical
scaling approach.

The tricritical point (7„g,) is defined by the
condition that all scaling fields p. conjugate to
densities Q with y &0 vanish. Hence the two cor.-
ditions p, g p'

' = p, &,
' = 0 define the trieritical field

values T, and g, in terms of the model param-
eters. Expanding the results (11)about the tri-
critical point, we obtain relations between the
scaling fields and experimental fields,

p.l 0 = CX T ~T + Cg g 6g, p. p p
= C2 T 6T,

where we retained only terms linear in 6T and
5g.

In the trieritical sealing theory' the critical
line is determined by p~, =r,pa, "~&. (A similar
relation holds for the first-order transition line.)
Hence, it approaches the tricritical point in the
(p,„p,) plane tangentially parallel to the p, , axis.
This is generally not the case for the critical
line expressed in terms of the experimental
fields in the (5T, 5g) plane, where using Eq. (12),
we obtain 5,T ~ 5~. In this sense the scaling
fields p. are also the "singled-out fields" of Grif-
fiths and Wheeler. " Furthermore, this example
shows explicitly that the tricritical exponents as
discussed here are defined relative to these par-
ticular reference fields. (We always use a flux-
ion dot to denote quantities in the scaling field
space. )

The conceptual difference between scaling
fields and experimental fields+" can be formu-
lated in terms of a "relativity hypothesis" for
critical points: All phase transitions determine
a frame of reference of scaling fields. Critical
exponents are defined relative to this frame of
scaling fields and determine the homogeneity
properties of thermodynamic and correlation
functions in terms of these variables. The tri-

critical transition is an example where in general
the scaling fields are not simply proportional to
the experimental deviating fields. This has to be
taken into account in the analysis of tricritical
experiments.
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