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relatively high value of 0.4 at early time to a low
value of 0.007 at a later time. This can be at
least qualitatively explained by (11) and (9) taking
into account the rapid increase of T {orv ) from
its initial value as follows: As time proceeds
v„/v decreases from its initial value of about
0.5 to a low value of about 0.07 at 120 nsec. From
(ll) and (9) it is seen that this decrease of v„/v
will cause both y and the wave energy to also de-
crease. Quantitatively, if we substitute v~/v
=0.07 into (11) we find that )( =6.8, so that w, '
= 13.6I'. Substituting this value of I' into (9)
with k'AD'= 2 we have

P,(i5Z, i')/annT =0.003

which is in rough agreement with the experimen-
tal value of 0.007.

In view of the basic approximation mode, it
may be that the rough agreement between the
present theory and the mentioned computer sim-
ulation and experiments is somewhat fortuitous.
However, it does indicate that accounting for the
modification of ion olbits by the method of strong
turbulence can be important for saturating the
ion-acoustic instability. An extended theory to
include the wave spectral shape will provide a

further test of the present saturation mechanism.
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A universality hypothesis relates the amplitude of the singular parts of the coherence
length and the specific heat (or surface tension). For the spin-2 Ising model it is exact
in two dimensions aud numerically accurate to within 1% in three It is co.nsistent with
measurements on the "Ising-like" systems CO2, Xe, and P-brass and the "Heisenberg-
like" systems RbMnF& and Eus to within experimental uncertainties (™20%). It provides
a sensitive and experimentally convenient indicator of symmetry ("universality" ) class.

The universality hypothesis for critical phenom-
ena' asserts that the equation of state very near
the critical point can be written

M(t, h) =(gt) m(rk/(gt) ),
where both the critical exponents (p and 6) and
the function m are the same for a whole "univer-
sRllty clRss of systems hRvlng the same sym-
metries. " Only the scale factors g and n depend
on the details of the particular system considered.
Thus, for example, three-dimensional Ising mod-
els with different spin magnitudes, lattice struc-

tures, and/or (finite) interaction ranges must all
be described by the same indices P and &, and
the same function m and may differ only in the
two scale factors g and n In (1), t =.(T —T,)/T„
M is the magnetization in units of the saturation
magnetization, and h is the magnetic field in units
of kBT/(magnetic moment per spin). For fluids,
~ = {p—p,)/p, and & = (p —p, ,)/k, T. Some tests of
(1) may be inferred from the literature. '"

Direct generalization of the hypothesis (1) to
the Fourier transform )((q, t, h) of the spin-spin
correlation function3 introduces in addition to g
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TABLE I. Comparison of X [Eq. {3}]and Y [Eq, (4)] for different universality classes. Experimental values for
n, v, and (the surface-tension expcnent} p are shown in the table; we fit the d=3 Ising-like materials using n
=0,125, v=0.638, p =1.25, the Heisenberg-like magnets using o,'=-0.13, v=0.717. Our hypothesis states that for
all systems in the same universality class, X (and Y) is the same,

d=2 Ising

sc Ising
fcc Ising
bcc Ising
P-brass

Xee
Co'
FeF,~

C6H)2-CH40 h

fcc Heisenberg~
EQS

RbMnF&

100X

100/2m'

1.651 + 0.010
1.649 + 0.004
1.659 + 0.006

1.9 + 0.3
2.0+ 0.5
1.4 + 0.2
4.8 + 0.9
7.1+ 3.0

7.6 + 0.2
9.1+ 1,8
6.8 + 1.4

&2.)"'
Ising-like, d =3

6.2+ 0.6
6.4 + 0,4

41+ 10
Heisenberg-like, d = 3

03

expt

0.125
0.125
0.125
0.159
0.08
0.125
0.16
0.125

—0.13
0
0

Vexpt

0.638
0.638
0.638
0.65
0.58
0.63
0.67
0.625

0.717
0.702
0.724

1.30
1,28

1.23

~See Ref. 25.
Refs. 16-18, 29; C, &/R = (2r) lln 2 + 1)] 1n(1/t ); C &z/

R = (3~3/4w)(ln3)2 ln(1/t); a«/$, z= 21n(&2+ 1)t; a«/$ «
=~3ln(8)t; a, &o~&/ksT~=-2t In{&2+1); a&zo~z/kBT~
=-t~3 ln(3) with a the nearest-neighbor distance.

Refs, 3, 20.
Refs. 30, 31.

'Befs. 32-35.
Refs. 32, 36-38.

~Befs. 39, 40.
"Refs, 9, 41.
~Ref. 21; 0.'=-0.14+0,06. With e =-0.13, one finds

C/R =(-6.8~0.2)t
j "Surface tension" and Y vanish for complete spin

symmetry.
"Befs.42, 42 n =0~0 3

Refs. 44 45 a = 0.007+ 0.02 from thermal expan-
sion, Ref. 46,

and n a length scale l,

X(q, t, h) = n(gt) 'f(ql/(gt)", nh/(gt)'), (2)

where now the function f is by hypothesis univer-
sal, i.e. , the same for all systems in a given
symmetry class. %e now develop an additional

hypothesis which connects n and l, thus reducing
the number of independent scale factors from
three to two.

The singular part I", of the free energy per site
(per particle) in units of kBT scales as E,c:n '

x (gt)' . Thus, the (singular) free energy be-
longing to a region of volume $ in d dimensions

[(~l(gt) " is the coherence length] scales as
n 'pl (gt)' " (p is the site or particle density),
which is a temperature-independent number,
when the scaling law dv=2 —n holds. We propose
that pl'/n is universal, i.e. (in. terms of directly
measurable quantities), that the combination

X-=t'n C $'/k s for d v = 2 —n,
X=- (gt)"" "'t'nC)'/ks for dvv 2-n

(Sa)

(Sb)

is the same numerical constant for all systems
belonging to the same universality class. C=gt /
n [--& ln(t)+ const, as n -0] is the leading sin-

gular part of the specific heat" per unit volume.
[Introduction of the factor n in (3) makes X only
weakly dependent on n for small n. ] Our hypoth-
esis is related to previous suggestions. ' "

As a check of this hypothesis (3), we have de-
termined X (at h = 0, T -T,', where the best data
are available) for a variety of different systems,
both theoretical and experimental, as shown in
Table I. For the d = 2, spin = ~ Ising model C
cc —lnt, $ ~t ', so dv=2 —n and by a judicious
interpretation of the n -0 limit, X= —(t$)'C/
ks lnt. The specific-heat and correlation-length
amplitudes are analytically known for the square
(sq) and triangular (tr) lattices, ""and one finds"
X= (2n) '. We have forced the d =3 data to be fit-
ted by the universal indices n = 0.125, v = 0.638
(Ising-like" ) and n = —0.13, v =0.717 (Heisenberg-
like" ). Since Ow d v —2+ n = 0.039 (Ising) and

0.021 (Heisenberg), the definition (Sb) must be
used, thus requiring knowledge of g (e.g. ,

" from
the coexistence curve). Model results"' indicate
that the variations of g"' " are too small to be
detected in Table I, so in practice we have taken
g= l.

Table I shows good agreement (to within uncer-
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tainties) between members of the same (?) uni-
versality class except in FeF, and the binary mix-
ture cyclohexane-methanol. FeF, is an anisotrop-
ic Heisenberg antiferromagnet, which should be-
come Ising-like sufficiently close to T,. It is not
accurately known where the crossover" should
take place, but it is at least suggestive that the
experimental X lies intermediate between Ising
and Heisenberg values. C6Hy2 CH40 is the more
difficult to explain, but the experimental uncer-
tainties entering X are quite large. Other possi-
ble reasons for these discrepancies include (i) ef-
fects on the amplitudes of Fisher renormaliza-
tion, " (ii) the influence of order-parameter-pho-
non coupling, (iii) the existence of "hidden" sym-
metries, mhich remove these systems from the
d = 3, Ising universality class, or (iv) lattice an-
isotropies. " Ignoring these two exceptions, we
conclude that the singular free energy in a region

is exactly —k~T, ln(t)/4n (d =2, Ising univer-
sality class) and approximately 0.08k BT,(gt) '"'
(d = 3, Ising) or 0.25k~T, (gt) '"' (d = 3, Heisen-
berg).

If I is universal and if the surface tension 0
~lp(-gt)" /n (interface tension in binary mix-
tures, Bloch wall energy in Ising ferromagnets)
can be evaluated" qualitatively correctly as &,p$,
then o can be estimated from the specific heat
alone. ' Thus, the numerical factor

Y'=- (0/k, T,)/(f'QC/k, )" " ", (4)

should be universal. Some values for ~ are
shown" in Table I. I'= (2w)'~' exactly for the
square and triangular jsotropic Ising models.
The agreement of Xe and Co, is encouraging; but,
the binary mixture again shoms strong deviations,
and older data 7 for H20 give ~ = 5. For the d = 2

Ising model and the d = 3 systems Xe and Co„
the surface free energies cr in an area $' ' are"
exactly k BT, and about 0.4k&T„respectively.

Universality in the form (l)-(3) is not a law of
corresponding states like the one following from
the Van der Waals equation (P/P, function of p/p,
and T/T, only). Our hypotheses specifically do
not require that quantities like C/p, $p' ', or o'/

kqT, p' ' (p is the particle or site density) are the
same for all members of a given universality
class at fixed f = T/T, —1. These latter—state-
ments would be correct if the scale factors n and
g were the same for all systems in the same
class, which is simply not true. " For example,
the specific heats per particle in the square and
triangular Ising models differ by 1%, while our
factor X is exactly the same for both. (In the an-

isotropic square lattice"" C/p even goes to zero
for lattice anisotropy —~.) In the three-dimen-
sional Ising models the specific heats per parti-
cle differ by 4%%uo, whereas X agrees within l%%uo.

Thus, the universality assumption is a neces-
sary and perhaps correct generalization of the
law of corresponding states. In this spirit, the
strongest tests of our hypotheses are for sys-
tems which are quite unlike, i.e. , have widely
different scale factors n and g. An interesting
test eouM be made if the surface tension of He'
were known very near T„sincequantum effects
are known from older data (I ielmezs and Watkin-
son2') to affect strongly the quantity v/kBT, p2~',

whereas we expect o$'/kBT„X, and I' to be inde-
pendent of quantum effects. Similarly, measure-
ments of the specific heat of the binary mixture
polystyrene-cyclohexane" would show whether
(contrary to our expectations) X depends on the
molecular weight.

Our universality hypothesis provides a simple
method for determining experimentally whether
different systems belong to the same universality
class and/or whether "true" critical behavior is
being observed. Its application (e.g. , the evalua-
tion of X and F requires only that one measure
two (or three) critical properties at a single,
fixed t. By contrast, in order to determine uni-
versality class by comparing critical exponents,
one needs to make measurements over several
decades in t. For example, although the mea-
sured critical exponents n and v of P-brass and
FeF, agree, our comparison of the amplitudes
shows that FeF, seems to present special prob-
lems.
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The tricritical behavior of a classical three-well-potential model for two-component
systems (such as He -He mixtures) is discussed by using renormalization-group tech-
niques. The tricritical exponents and scaling fields are calculated for three dimensions.

A model for a two-component system with a tri-
critical point (such as in Hea-He mixtures) is
found to show molecular-field tricritical behavior
(apart from logarithmic corrections). The model
can be viewed as a generalization of the model of
Blume, Emery, and Griffiths (BEG).' It is solved
in three dimensions by using Wilson's approxi-
mate renorrnalization- group recursion relations. 2

The recursion relations were previously shown
to give nonclassical behavior for ordinary criti-
cal points. ~ The tricritical transition differs
from an ordinary second-order transition by the
existence of an additional density with critical
fluctuations. ' The tricritical scaling fields are
also evaluated. They are the field variables in
which the thermodynamic and correlation func-
tions are scaling invariant. "

We propose a model that exhibits a first-order,
second-order, or tricritical phase transition de-
pending on the value of an external nonordering
field g.' Let s(R) denote a classical Ising spin of
range -& s &+ at site R of a discrete cubic
lattice; and let 5 denote all nearest-neighbor lat-
tice vectors. Then we consider a system with
the Hamiltonian X/k~T = H=H-,„+H&„,in w-hich

the exchange-interaction term and the potential-
energy term are given by

H,„=J'Q R zs(R)s(R+ &), (la)

H, &
= —PR[r's2(R) +u's~(R) + v's'(R)] (1b)

with the coefficients r', u', and v' depending on
the temperature T, nonordering field g, and
strength of the tricritical interaction [compare
Eqs. (3) and (5)].

The A nsat~ for the potential-energy term IIp„
can be justified either by starting from a tricri-
tical Landau-Ginzberg forgo for H/s'I or by re-
placing the BEG spin-1 model for He'-He' mix-
tures' by a continuous-spin model with a spin-
weight factor. From both approaches one ex-
pects a tricritical transition to occur for some
H „consisting of the sum of three-well poten-po
tials at each lattice site R (in contrast to two-
well potentials for ordinary second-order transi-
tions'). In fact, the renormalization scheme
yields this result for the potential at the tricriti-
cal point (T,.g, ) as shown in Fig. 1. For fixed
g&g& the side wells of the potential dominate and
we expect the model to exhibit a second-order
transition at a temperature T,(g), whereas for
g &g, we expect a first-order transition at T,(g).
The three-well potential simulates the cornpeti-
tion between two densities, one of which is the
ordering density m as in ordinary critical phenom-
ena, and the other is an additional nonordering
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