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All tricritical point exponents are derivable in
terms of the three scaling powers a„a„a,.

The scaling hypothesis (1) predicts the geomet-
ric shape of the three critical lines, and this
may be seen as follows. If the function 6 pos-
sesses a singularity at a particular point Q =—(x„
x„x',), then by (1) it must also possess a singu-
larity at the point Q'=(A. '~x„A. 2x„h,'sx,). There-
fore, the three critical lines must possess a par-
ametric representation in the coordinate frame

HST(=q)

FIG, 1. The wings and the physical plane for Case I.
The axes are indicated for magnets, with the more gen-
eral terminology (Ref. 1} in brackets. The coexistence
surfaces are indicated by shading. The wings are
bounded by L2, 1-3, and the CXS in the physical plane by

At a point P on I-~, the three principal directions
of ordinary scaling are indicated. These assume the
limiting orientations t&~, &2,x3) at the TCP.

The shapes of the three critical lines meeting at a tricritical point are discussed in the
light of the homogeneity hypothesis. We give a complete listing of possible shapes consis-
tent with scaling. Certain possible geometries are thereby shown to be inconsistent with
scaling. Application of these ideas to the crossover regions is shown to considerably
simplify the "metric problem" posed by Riedel.

Riedel' has recently proposed a theory of seal- (i.e., we introduce a "scaling power" a, for each
ing for tricritical points (TCP's). His work direction): The singular part of the Gibbs poten-
treats scaling in the two-dimensional "physical tial is asymptotically a generalized homogeneous
plane" (his g-T plane) near the TCP, instead of function, '
in the full three-dimensional space which, as
Griffiths and %heeler" pointed out, is needed to G(&"x„A.'2x„A.'3x,) = A, G(» „x„x,).
better comprehend the thermodynamics of com-
plex systems.

This paper shows how the geometry of curves
and surfaces of singularities at the TCP is de-
termined by the equation of scaling there; in par-
ticular, it is shown that certain shapes of criti-
cal lines at the TCP are inconsistent zenith scaling.
Also, we make predictions about the "wings"
(c.f., Fig. 1). These are of interest because
anomalous behavior of some thermodynamic func-
tions may be expected in the H-T plane at points
close to the wings.

Predictions of scaling for the lines L„L„
and L,. At each po—int P on a critical line L, (cf. . Ht

)l
Fig. 1), a triad of vectors x;(L;) can be estab- Lp

lished. The first, x,(L, ), points out of the coex-
istence surface (CXS) in a strong direction (S); L~—
the second, x,(L,), a weak direction (W), points Xp

out of the critical line but is in the plane of the
CXS; the third is tangent to the critical line, and
we call this an independent direction (1). x,(L, )
and x,(I, ) can be uniquely chosen to be ortho-
gonal to x,(L, ) and to each other. As the point

Xg X

P moves to the TCP, the triad [x,(L,),x,(L, ),
x,(L,)] attains a limiting orientation.

X)(
It is shown below that unless a degeneracy oc-

x,(L,)
curs, the scaling hypothesis implies that the or-
ientation of these three triads is parallel, in the
sense that each member of a particular triad T/Tt

possesses a parallel counterpart in each of the
other triads. These three directions will be the
principal directions of scaling about the TCP.
We denote these three' directions by x& =lim(P-
TCP)x, (L,) (cf. Fig. 1).

The scaling hypothesis about tricritical points
can be made in such a fashion that all the vari-
ables x„x„x,are treated on an equal footing
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FIG. 2. Projections of the region near the TCP, parallel to one of the axes && of TCP scaling, onto the plane
formed by the other two axes. This is for nondegenerate cases. The wings and the CXS in the physical plane are
shaded. The speckled regions indicate where the scaling about the lines should be valid; their boundaries, denoted

by Lx, are the projections onto the planes of the edges of the regions in the full three-dimensional space. (a} Pro-
jection onto x&,xz plane. (b) Projection onto the x~, xs plane for a& & a3. (c}Projection onto the x&, x2 plane for a&

&a2. Note the wings cannot now be seen. (d) Projection onto the x~, xq plane for a& & a2. (e} Projection onto the x&,

x3 plane for a(& a3.

(x„x„x,) of the form

Lq =(A, r'&, I3,r'2, C ~r'&) (2)

Using the facts that L, lies in the physical plane
and L„L,are symmetric about it, we find A, =0,
A, =-A„B,=B„and C, =C,. Thus L, approach-
es the TCP parallel to the axis corresponding to
the lesser of a, and a,. Since this axis has been
defined to be the x, axis we conclude that

a2 ~a3.

In the case that (3) is an equality, B,= 0. Similar-
ly, (2) shows that the lines L„L,approach the
TCP parallel to the x, axis, where k is such that
a„ is the minimum of a„a~, and a3.

The general shapes of the L, at the TCP are
determined by the relative magnitudes of a„a„
and a,. The inequality (3) reduces the number of
possible orderings from six to three. In addition
there are del, enervate cases where two a,. are
equal. Ignoring these for the moment, the three
nondegenerate cases are (I) a, &a, &a„(II) a, &a,
&a„and (III) a2&a, &a,.

A general prediction of scaling can be made ini-
tially: %'hen the lines L„L„and L, are viewed

TABLE I. Properties of the directions (xf +2 +3) for
the n0&degenerate cases. Here S denotes the strong di-
rection, W the weak direction, and I the independent
direction.

Case I
L) L2 L3

Case II
Li E-2 L3

Case III
L) L2 L3

S S S
W W W

I I

S w w
W S S
E E I

S E

W S S
I W W

in projection along the x, axis, they must all ap-
proach the TCP along the x, direction [c.f. Fig.
2(a)] or else a, =a, (which can be checked by ex-
ponent comparison').

Case I, a, &a, &a, ; Because a, is smallest, the
lines L„I,approach the TCP along the x, axis
[cf. Figs. 2(b) and 2(c)]. This case should pro-
duce interesting effects in the physical plane,
since the lines L„L, remain close to the physi-
cal plane as they move away from the TCP. The
Blume-Emery-Griffiths model' is of this type.
The orientation of the coexistence surfaces form-
ing the wings is given in Table I.'
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Case II, a, &a, &a,: In this case the projection
along the x, axis is the same as in Fig. 2(b)
(since a, &a, as in Case I), while that along the
x, axis is shown in Fig. 2(d) which shows that the
limiting orientation of the wings is now perpen-
dicular to the physical plane. ' The properties of
(x„x„»,) are summarized in Table I.

Case III, a, &a, &a,: Here the projection along
x, is given in Fig. 2(e), while the projection along
x, is the same as Fig. 2(d) (since a, &a, as in
Case II). In this case not only do the two wings
meet the physical plane perpendicularly [cf. Fig.
2(d)] but the line L,-L, also intersects the line
L, perpendicularly because a, &a, [cf. Fig. 2(e)].
The properties of the x,. are summarized in Table
I. Finally there is the possibility that two of the
powers a,. are equal, for which Eq. (2) allows the
lines L „I„L,to meet at angles other than mul-
tiples of 90'.'

Case IV, a, = a, &a,: There is degeneracy be-
tween x, and x,. The projection along x, is the
same as in Fig. 2(b) (since a, &a,), while the pro-
jection along x', is given in Fig. 3(a); », and x,
are not both strong for the wings (since both are
out of the critical line and CXS) and an appropri-
ate combination of x, and x, must be found to ob-
tain a weak direction.

Case V, a, & a, =a,: Here there is degeneracy
between x, and x,. The strong and weak direc-
tions are the same as in Table I, Case II, but ap-
propriate combinations of x, and x, form the in-
dependent directions at the TCP. The projection
along x, is given in Fig. 3(b).

Degeneracy between a, and a, and "full degen-
eracy" (a, =a, =a,) can be treated similarly.

This case-by-case analysis shows that only a
limited set of geometries is possible at the TCP.
E.g., the lines I-„L3 can never approach the TCP
along the x, axis, and any system with this geom-
etry would violate the scaling hypothesis (1).

Scaling for the crossover lines LX.—When two
different scaling equations hold in adjacent re-
gions, there are ill-defined "boundaries" between
these regions. ' On these boundaries the scaling
behavior "crosses over" from one type to another
(e.g. , tricritical to critical line). The positions
of these boundaries have previously been a mat-
ter of question. '

If the equation of homogeneity (1) is valid, then
the boundaries of the regions of validity of the
scaling laws should also be parametrized. This
is because the boundaries will be determined by
inequalities between x, and x„however (1) tells
us that the quantities of significance near the

Xp
ik

Lp Lp

Lg

X)

L)

FIG. 3. The same as Fig. 2, but for the degenerate
cases. (s) Case IV, a&=a2, (b) Case V, a&=a3. Since
the I

& TOP with non-zero slope, the slopes of the I X

are undetermined.

TCP are not x, and x„but x,' '2 and x,' ' .
Hence any inequalities governing the scaling re-
gions will be relations between these quantities,
and we will therefore expect the boundaries to be
parametrized in the same fashion as the lines of
singularities, Eq. (2). This will give their gen-
eral shapes once the relative magnitudes of a„
a„and a, are known (from the positions of the
wings or otherwise).

To give a feeling for the inequalities that arise
between the quantities x,' '~, x,"'~, and x3
we offer an example of a model function for the
susceptibility which obeys scaling and describes
the behavior in the physical (»,-x, ) plane for T

&=~(»—,+B»
—«) -&~-»(»—,-k»—,1~) -~; (4)

X has a line of singularities I, atx, =k@3'~~, and
comparison with the last section shows that p
=a,/a, . First note that if x, = 0, )(=Ax, "~, so
that y is the "TCP exponent. " Next, if x, &0, and
we let x, —Ax 3' = c, then

)(=X[(B+k)»,"'+~] (5)

This function has two sorts of behavior depending
on the relative magnitudes of s and (B+k)x,' ~.

This gives inequalities of the form suggested,
since the quantities related are x, and x,'
In fact for s «(B+k)x, 'i~, )( diverges with expo-
nent y as s -0. For s»(B+k)x, '~~, it diverges
as c &. The equation of the crossover line is
therefore given by

», =- (B+2k)», '",
and this possesses the same "scaling-determined"
geometric behavior as the line L,. This reason-
ing determines the shapes of a11 the crossover
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lines I X.
Restricting our attention to the physical plane

considered by Riedel, it is clear that the cross-
over lines must approach the TCP along the x,
axis if (3) is not an equality. Since the domain
in which thermodynamic functions satisfy TCP
scaling is only a limited region, and since near
the TCP, the position of the crossover lines I,

&&

is close to the x, direction, the lines L&& are fair-
ly accurately placed. The "metric problem"' is
thus considerably simplified and may even be ef-
fectively disregarded in nondegenexate cases.

The Blume-Emery-Griffiths (BEG) model. ' An-
example for which the wings' positions are known

and for which we can solve for the relative values
of a» a» and a, is the BEG spin model for He'-
He4 mixtures, which has been treated extensively
by mean-field theory. ' We find that for this mod-
el, a,:a,:a,= 5:4:2. Hence, the mean-field-theory
solution of the BEG model exemplifies Case I,
a~ &a2 &a3.

Critical-point exponents in terms of a, .—These
may be obtained by appropriate differentiation of
Eq. (1). E.g. , )(-(T- T, ) 7 with -y=(1 —2a,)/
a„and a, is determined uniquely by y, A number
of "physical-plane exponents" are expressible in
terms of a„a,. E.g., for the Ising metamagnet
FeCl„" y —= —,

' and y -=a,/a, = —,', hence a, = &, a,
Knowledge of the behavior of M„or X„will

yield a,.
We wish to thank F. Harbus for useful discus-

sions.
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The reader may have some difficulty at this point in

making correspondence between the present notation
and that of Ref. 1. There is no counterpart to x& be-
cause the equations of Ref. 1 were restricted to x~ =0.
The variables x2, xs are denoted by p&, p2, respectively,
in Ref. 1.

For a systematic application of generalized homo-
geneous functions to scaling, see A. Hankey and H. E.
Stanley, Phys. Rev. B (to be published).

For example, p~a&/a&, -y=(1-2u~)/a2, -y~t =(1
—2a&)/a2, p t =(1-a&)/a2.

M. Blume, V. J. Emery, and R. B. Griffiths, Phys.
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There is one exceptional case which is not treated
here.

In the event that one finds a model system displaying
this behavior, then one must test the possibQity that
two scaling powers are equal (Ref. 5); otherwise the
scaling hypothesis (1) is invalid for this model.

F. Harbus, private communication. See also F. Har-
bus and H. E. Stanley, Phys. Rev. Lett. 29, 58 (1972).
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The Q-switch and polarization domain configurations in a nearly perfect Cr single crys-
tal has been directly observed by neutron-diffraction topography in the AF~ and AF2
phases. The size of the domains proves to be as large as 10 3 to 10 cm in either phase.
As far as the present observation is concerned, each domain in the AF~ phase splits into
domains in the AF~ phase, with two possible polarizations of the transverse spin-density
wave.

In a previous paper' it was reported that the Q-
switch domain boundaries in antiferromagnetic
Cr in the AF, phase at 78 K were observed by
means of x-ray double-crystal topography, using
the slight deviation from cubic symmetry. In the
present paper, unambiguous direct observations

are reported on Q-switch and polarization do-
mains by the use of new neutron topography. As
is well known, there can be three kinds of do-
mains in the AF, phase and six in the AF„and
each of them gives independent neutron satellite
diffractions at different positions in the recipro-


