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Making use of the inequalities x(1+x) ~- ln(1+x)- x

for x &-1, one shows that -p(0)- I- -p(0)- l-c(0).
Condition (iv) says that P(0) is finite, and conditions (i),
(ii}, and (iv) can be applied to prove that —[1+c(0)j is
bounded and positive.

Equations (12a) and (12b) are derived by commuting
the P differentiation with the integrations. This pro-
cedure is legitimate since conditions (ii) and (iii) imply
that the integrals in Eqs. {12a) and (12b) are nonsingu-
lar for 0-P- l.
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Electromagnetic waves propagating along a dc magnetic field are shown to excite pa-
rametrically decay, purely growing, modu1ational and beat wave instabilities. Particu-
lar attention is given to whistler parametric instabilities, including a discussion of their
nonlinear development and saturation.

Considerable attention has been given in the
literature to the nonlinear behavior and stabi1. ity
of electromagnetic waves (in particular, whis-
tlers"), especially to explain many natural phe-
nomena. ' Here we point out important new non-
linear instabilities associated with whistlers and
electromagnetic plasma waves. The whistler de-
cay and purely growing instabilities, in particu-
lar, provide an important dissipation mechanism
in parallel and oblique collisionless shock waves4
such as Earth's bow shock. Because of the very
low threshold in low-P plasmas, the decay insta-
bility may occur in the magnetosphere and play a
role in triggered vlf emissions.

The stability analysis below, which applies to a
general electromagnetic wave, also predicts new
electromagnetic instabilities as well as some
previously discussed' which can be important in
laser-plasma interactions, %e focus here, how-
ever, on the whistler problem, with more details
of it and the laser problem to appear in a forth-
coming publication.

The equilibrium considered is that of a large-
amplitude circularly polarized electromagnetic
wave propagating along a dc magnetic field, Q,

Bp8 p at a frequency ('d
p and w av e number kp

=kpe„with field

& =& [e„cos(&,t-k,x)+e, sin(~, t-k,x)].
The motion of a particle in this pump wave is de-

scribed simply in terms of the above sinusoidal
functions in the limit kov, /&u, «1,s where v, =—(T, /
m,)"' is the thermal velocity along x.

A linear perturbation along x of the above in-
homogeneous time and space equilibrium can be
described completely in terms of the waves E„
&&exp[i (~+n~, )t —i(k +nk, )x], where n =0, +1. The
m —&u, (mode 1) and ~+&co (mode 2) waves are
circularly polarized electromagnetic waves such
as a whistler, while the n =0 wave is electrostat-
ic such as an ion wave. For a sufficiently large
pump, all three of these linear waves grow in
time at the same rate at the expense of the pump
field energy.

Only the results of the linear calculation are
presented here. Both a fluid and an equivalent
Vlasov treatment, i.e., the "k hx technique, "'
have produced identical results in the fluid limit.
In the former case, the full set of Maxwell's
equations are combined with the electron's mo-
mentum and continuity equations and the ion equa-
tion of motion with only the Ep force. For the
electrons a simple scalar pressure is assumed.
Dissipation effects are included phenomenologi-
cally.

The resulting dispersion relation, which is of
the generic form for three-wave mode coupling
problems, is

&, = (1+)(,')(M„/e, +M„/e, ),
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where
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Mg; =(-X.'/2n, )(fl. '/u, .')H&, —1)(ptp. —@~It,)*+~,np, (n, pl—,)],
s~ = 1 —(0~/k~ '0~(A —Q7 )q

~.=1+X, +X. =I-Z--&.Z'(v/2kvq)

.,r PP'~D,'

(2)

(3)

(4)

and where Z' is the derivative of the plasma dis-
persion function, 0, is the wave gyrofrequency,

j =1, 2 is the damping rate, and 2 =m+iv, v being
a phenomenological collisional damping rate;
other definitions are standard.

The mode coupling coefficient M,.& results from
two coupling processes which tend to reinforce
each other. In the presence of the large-ampli-
tude electromagnetic (pump) wave, a linear per
turbation of the v && B force in the direction of k,
due to the linear electromagnetic wave drives up
an electrostatic density fluctuation n, along k,.
In turn, n, couples with the zero-order electron
velocity to produce a first-order current pertur-
bation enyvo which drives up a magnetic perturba-
tion 8,. M,.~ is the product of these two coupling
processes and thus describes how energy is cou-
pled between a linear electromagnetic wave and

density fluctuations at the expense of the pump
field.

Three classes of instabilities can be identified

by their behavior slightly above threshold. The
decay type of instability (class I) arises when n,
and one of the linear electromagnetic waves are
driven at linear normal-mode frequencies. An-
other class (II) arises when both linear electro
magnetic waves but not n, are near linear normal
modes; the density fluctuations couple energy be-
tween the modes at the expense of the pump. A

third class (III) exists when none of the waves

are linear normal modes but instead are unstable
modes created by the pump.

If the pump wave is an electromagnetic plasma
wave, i.e., (up'=to~, '+kp'c', Eq. (1) contains a
purely growing ion instability and a 0-ko electron
instability' not previously considered. '

When the pump is a whistler wave with &~, &O„
four types of parametric instabilities exist. Fig-
ure 1 summarizes the growth rates for these in-
stabilities for the numerical simulation parame-
ters. The instabilities are the following:

(1) Modulational instability (class II). In the lim-
it of + «0 and &«ko, the dispersion relation of
Eq. (1) agrees exactly with that of Hasegawa. '

(2) The beat wave instability (class II), involv-
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FIG. 1. Solutions to Eq. {1)for 8JBp=0.2 (dp, /Qp
=4 M /m =1836 fCp=p'/2 ~ (dp/0 =0.71 and P =0
illustrating the four basic instabilities.

ing only electrons. The condition that both high-
frequency waves satisfy the linear whistler dis-
persion relation and thus be unstable requires
that K' =3KO' —1. The bandwidth of the instability,
however, is only on the order of 0,„'/re~, ' which
is 1/400 in Fig. 1. In contrast to the modulation-
al instability, the real part of + can be a large
fraction of &up and is given by (u/(u, =K/2E'pP, while
the growth rate scales as ~,A, /a&~, .

(3) Ion decay instability. The most important
whistler instability over a wide range of parame-
ters is the class I type in which the pump wave
decays into a backward-going whistler at —k, and
an ion acoustic wave ~, at 2k . Near threshold
the matching conditions &up = co, +&a, and k =k,
+2k, are satisifed. The electromagnetic wave
~, is generally negligible except when the usual-
ly small amplitude parameter a -=(fl;/~p)B '/B, '
is on the order of 1. Instability occurs for'

B '/B, ' ) 8(1+K,')P,y,y, /(u, (u„

where ~, = 2k, (T,/m, )'", P, = 8' T,/Bp', and y, is
the damping on the acoustic wave. Just above
threshold for n"'«&u, /&u„ the maximally grow-
ing wave is co =&u, +imp(o. vp/u, )"'. For n'I' » &u,/
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co„ the most unstable wave is

(u/(oo =-,'(2Iy)"'(1+ iv 3). (8)
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In Fig. 1 the decay instability region occupies a
narrow bandwidth (- n'~') around 2ko with the
maximum growth rate described by EII. (6).

(4) Purely growing ion instability. For k &2ko
the decay instability changes into this class III
instability with nearly zero real frequency when
damping is negligible. In the fluid acoustic limit
the frequency is

B k(P LI

AB
0 0

where p =8snT, /B ' and n „is the ion AlfvItn

speed. The growth rates are largest near the de-
cay instability resonance, and the high-k cutoff
is just the Bennett pinch condition' aided by this
resonance.

The results of a one-dimensional numerical
simulation' with the parameters of Fig. 1 which
primarily emphasized the whistler decay insta-
bility are shown in Figs. 2 and 3. In Fig. 2 "B~'
Left" is a plot near saturation of the spatially
circularly po1arized magnetic field B,' as a func-
tion of k in the direction of .the large-amplitude
whistler. The two largest waves are the pump at
mode 2 and another whistler at k =3k, (the k +ko

mode) whose energy is about 10 ' of the driver.
For "B~' Right, "which is the Fourier plot for
negative wave numbers, i.e„ the opposite spatial
polarization, there is a sharp peak at the second
mode, i.e., -k„corresponding to the decay in-
stability into a whistler moving opposite to the
driver. The energy in mode 3 (-1.5ko} occurs
because of the excitation of the purely growing
mode. The electrostatic field energy E~' is plot-
ted as a function of k in the third portion of Fig.
2; it shows a peak due to the ion wave at mode 4
or k =2ko with no corresponding peak in the mag-
netic field energy. The whistlers at k =-k, and
k =3ko and the ion wave at k =2ko correspond to
the unstable three-component eigenmode. The
growth rate of the three components follows Eq.
(6) to within 10%%uo and the relative amplitudes
agree with a calculation of the eigencomponents.

There are three basic mechanisms which can
alter or stop the linear growth of the decay and
purely growing instability.

(A) Saturation by 100%%uo modulation. Unless the
parameter n -1, saturation of the decay instabil-
ity occurs when the backward traveling whistler
becomes equa1 in amplitude to the pump wave,
thus saturating the mode coupling. The plot of
B, versus B, with x as a parameter in Fig. 3(c)
illustrates both the initial circular polarization
of the driving whistler and the net linear spatial
polarization at saturation corresponding to 100%%uo

modulation as shown by the amplitude of B in
Fig. 3(f).

(B) Saturation by ion wave breaking. At high
pump field (a -1}linear growth may terminate by
the breaking of the excited ion wave. Since the
mode coupling is not stopped, however, it ap-
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FIG. 2. Fourier amplitudes of the two spatial polari-
zations of the magnetic field and the electrostatic field
at T =1000~&, ~ for a simulation with the parameters
of Fig. 1 (p~=g) and 2', /2" I =25, a system length of Sc/
~&~, 20000 simulation particles, cell size -v, /&~, and
timestep 0.2&, '.
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FIG. 2. (a), (d) Particle phase-space and magnetic
field plots for the simulation at 2'=0; (b), (c), (e), (I) at
T -2000~~,
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pears to be only a quasisaturation, reducing the
rate of equilibration of pump and wave energies.
Two types of breaking are observed to occur:
(a) the usual ion trapping mechanism in acoustic
waves when the wave amplitude is large enough
for the ion trapping velocity to equal the (corn
plex) phase velocity of the wave, and (b) higher-
order mode coupling which causes the ion wave
to steepen and adds to the ion trapping distortion
of the wave. Wave breaking occurs at much high-
er amplitude than in the usual ion-acoustic wave
because the pump wave has increased the phase
velocity much above the acoustic speed [cf. Eq.
(6)]. The ion wave field at breaking of type (a)
can be related to the backward-traveling whistler
amplitude from the eigenvector equation used to
determine the dispersion relation. This deter-
mines a critical whistler amplitude B„atwhich
breaking occurs, B /B„=4o.'"'(1+K,'). lf B /B„
& 1, ion breaking cannot occur before 100% modu-
lation; whereas if B /B„&1, it can.

A comparison of the intial ion v„-x phase space
of Fig. 3(a) with that at T =2000~~, ' in Fig. 3(b)
shows the development of the large-amplitude ion
wave and the associated strong ion trapping. The
trapping observed is of the type (b) and occurs
shortly after the saturation by 100% modulation
since B„/B„-s. The ion kinetic energy in the
ion wave in the linear regime, which is (B /
SB„)B,'/Sw, provides a reasonable estimate of
the ion heating at breaking.

(C) Saturation by electron heating. As shown in
Fig. 1 and in Eq. (7), finite electron pressure
stabilizes the short-wavelength purely growing
mode. However, electron pressure has little ef-
fect on the decay instability. A comparison of the
initial equilibrium electron v, -x phase space in
Fig. 2(d) with that at T =2000+~, ' in Fig. 2(c)
shows the strong clumping of the electron cur-
rents associated with the ion density peaks of
the ion wave. Very little electron heating is ob-
served, however, because the initial P =-,' sta-
bilizes almost all the purely growing modes.
Other simulations with colder electrons shows
strong electron heating until P - —,——,.

Simulations of high-Mach-number switch-on
shocks have also shown clear evidence of these
decay and purely growing instabilities. Since the

whistlers in these shocks have o -1 and, hence,
parametric growth rates y- ~„even relatively
short whistler wave trains in front of the shock
will be very strongly unstable. The short-wave-
length, purely growing instability tends to heat
the electrons until P, 1 behind the shock, while
the decay instability causes strong ion heating
and, hence, a highly turbulent shock structure. 4

Although the equilibrium is more complicated,
we expect the parametric instabilities to persist
in the oblique whistler problem although in a
modified form and provide the explanation of the
shock structures observed by Biskamp and Wel-
ter. '
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