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The resonant frequency of a quartz crystal oscillating in the thickness-shear mode
changes by virtue of the mass loading due to any type of film laid down on its surfaces.
For a helium film only the normal fraction remains rigidly coupled to the substrate mo-
tion. Adsorption isotherms of He~ measured with this technique show clear departures
from conventional nonsuperfluid behavior. We attribute this effect to the onset and pres-
ence of superfluidity in the film.

There is considerable interest in the question
of the disappearance of superfluidity in very thin
films of liquid helium. ' ' In particular it has
been well established' that in sufficiently thin
films superflow disappears even though there re-
mains a finite superfluid fraction in the film.
The point at which the superfluid fraction itself
disappears has been open to some conjecture. It
is to this question of the direct measurement of
p, /p in thin films that this experiment pertains.

The resonant frequency of a quartz crystal
oscillating in the thickness-shear mode is low-
ered by virtue of the mass loading due to any
film laid down on its surfaces. ' In particular,
under the conditions which obtain in our experi-
ments, this change in the frequency of the crys-
tal, bf, is given by the formula

—bf = 2(2f'/cp, )v.

Here o represents that part of the adsorbed mass
per unit area which remains rigidly coupled to
the substrate motion. f is the resonant frequen-
cy, c is the shear-w~' e velocity in the crystal,

and p, is the density af the quartz. The extra
factor of 2 allows for loading on both of the two
faces of the quartz crystal. The validity of ap-
plying this formula to a liquid-helium film is
based on the fact that for the regimes of interest
in our experiments we find (employing the normal
fluid viscosity r) and density p„) that the viscous
wave length A. = (t)/mph)'~' always far exceeds the
thickness of the films with which we work, except
perhaps at relative saturations mell in excess of
99%.

By virtue of this relationship we have measured
the mass adsorbed as a function of the helium
gas pressure P in our experimental chamber up
to the saturation vapor pressure P,(T) for a se-
ries of temperatures. The resulting adsorption
isotherms fo versus P/P, (T)) for liquid He' show
a characteristic point of departure from that ex-
pected from a nonsuperfluid. Figure 1 exhibits
several representative isotherms obtained by
employing this technique on liquid-He films. By
comparison, Fig. 2 represents an isotherm of
liquid He' obtained at T = 1.356'K with exactly the
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D/D =(8/[TlnP (T)/P) j"'. (2)

Here D/D, represents the "number of film lay-
ers, "with Do currently" taken as 3.6 A. The
characteristic temperature 0 measures the
strength of the Van der Waals force between the
wall and the helium atoms.

For relative saturations P/P, (T) between 0.1
and 0.72, before the onset of superfluidity, a

0.08 cm/sec, which is well below the critical
velocity in a helium film. Hence both mecha-
nisms are eliminated as possible explanations for
the relatively abrupt onset of superfluidity ob-
served in these experiments.

Two independent quartz-crystal channels were
monitored simultaneously, the aluminum elec-
trode one and the gold electrode one. No signifi-
cant difference in data was observable. Measure-
ments both in adsorption and desorption were
found to be coincident over essentially the entire
range explored. Only at pressures in the range
of 10 ' Torr or less do we find a difference be-
tween adsorption and desorption. At this low
pressure, however, only the adsorption is physi-
cally meaningful by virtue of experimental practi-
calities. " One cannot desorb all of the residual
helium gas condensed at liquid-helium tempera-
tures. However, in adsorption one starts with a
vacuum prepared at higher temperatures without
any residual helium submonolayer. Another un-
usual aspect exhibited in Fi.g. 1 is that for tem-
peratures greater than about 1.64'K the adsorp-
tion signal appears to turn around and actually
decrease after the pressure approaches within
about a percent of the saturation pressure P,(T}.
One expects the signal, —hf, to increase indefi-
nitely at P,(T}. For the moment this behavior re-
mains somewhat of a mystery. Other research-
ers"'" investigating this regime have also re-
ported anomolous results there. Hence we sim-
ply offer our data for public scrutiny without
further comment on these effects until we gain
further insight into them. These anomalous ef-
fects occur only within a few percent of satura-
tion. Our interest centers on the superfluidity
onset. The latter occurs at much lower satura-
tion fractions except in the vicinity of the A point.

Figure 4 is a plot of an observed adsorption
signal, —&f, against [logP, (T)/P] "' at a tem-
perature 1.649'K. On the basis of the Frenkel-
Halsey-Hill theory'~ this should reflect the be-
havior of the nonsuperfluid mass adsorbed as a
function of the thickness D of the film in the fol-
lowing manner:
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FIG. 4. Experimental adsorption signal at T ~1.649'K,
plotted in Frenkel-Halsey-Hill fashion as a function of
(logP0/P) ~~3 to illustrate the method of obtaining the
Van der Waals strength ~ and the normal-fluid fraction
as a function of film thickness. The ahsisca is propor-
tional to the film thickness.

linear regime is observed as expected. The
slope of the extrapolated line drawn through this
regime should reflect the bulk total helium densi-
ty p because at these levels of saturation one ex-
pects

do/dD = pb„q~ =0.146 g/cm,

0.1&P/P, &0.7, T= 1.649'K.

Employing (2), the sensitivity of our instrument
as obtained via Eq. (1) [do'/d(- bf) =3.9X10
g/cmm Hz], and the notion embodied in (3), one
finds 8 = 39m 6'K, a value quite consistent with
other estimates for this number. "

Our experimental data points in Fig. 4 fall be-
low the extrapolated total fluid density line dis-
cussed above for relative saturations in excess
of 72%. As mentioned, we attribute this to the
elimination of the superfluid fraction from the
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film-mass loading effect. Hence we expect our
data points to extrapolate to a straight line of
lower slope do„/dD =p„(bulk). As one can see
from the figure, this is, in fact, the case. Using
this notion one calculates a residual superfluid
fraction of about (75+ 3)% whereas the tabulated
vapor pressure bulk value is 80%. Considering
the fact that the whole of the abscissa of Fig. 4
only spans about 30 atomic layers, we consider
our results in remarkably good agreement with
expectations and accept them as further evidence
that we are indeed making direct measurements
of the superfluid fraction in very thin films.
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We have developed a technique for introducing a variety of impurity atomic ions into
liquid helium and measuring their mobility. We find that, in contrast with predictions
of the "snowball" model of Atkins, the ion mobility depends on the atomic number of the
core ion in a way that cannot be explained simply in terms of the mass of the ion. The
relative mobility of 4~Ca and Ca ions has been measured and is consistent with existing
theories.

For many years ions have served as useful
tools in investigations involving liquid helium.
The drag force encountered by an ion in motion
through the superfluid exhibited the energy spec-
trum of the elementary excitations. ' Ions have
been used to generate quantized vortex rings, '
and studies of the interactions between ions and
vortex lines provided useful information about

quantized vorticity. '
The nature of the ions themselves has been the

subject of considerable research. The observa-
tion of the energy well seen by the electron in its
bubble, 4 and the explanation of the low-tempera-
ture mobility in terms of resonant oscillations of
the bubble surface, ' have provided strong evi-
dence for the correctness of the bubble model for


