
VOLUME 29, NUMBER $ P H Y S I C A I. R K V I K%' I.K Y T K R S

angular distribution Dleasured at 16.90 Me+ re-
flects both the DR and the RR interference terms.

We present these results as an illustration of
the extent to which the proton inelastic scattering
measurements in the lead region can be used as
probes both of structure and of interaction mech-
anisms, and of the degree to which the available
information from a variety of reactions can be
bxought together into a coherent and quantitative
picture. The present studies have focused pri-
marily on the dominant components of the wave
functions of the states involved. Further predic-
tion of such quantities as polarization and (p, p'y)
angular-correlation coefficients will be tested
against the corresponding data, as soon as they
become available, in order to permit establish-
ment of other than these dominant components.
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Ultrarelativistic geodesic particle orbits in the Sehwarzschild geometry produce radia-
tion (GSB) with angular distributions like that of synchrotron radiation. The spectra of
high-frequency scalar, electromagnetic, and gravitational GSH are compared to each
otber and to the spectrum of synchrotron radiation. The differences among the spectra
are explained in terms of the shape of the effective potential for GSH and the inapplica-
bility of geometric optics.

Simple arguments' based on the local genera-
tion of radiation and propagation on null lines pre-
dict that a particle accelerated in an ultrarelati-
vistic circular orbit in flat space-time produces
radiation (synchrotron radiation) focused in a
very narrow cone, and a spectrum characterized
by a peak at a frequency much larger than the
fundamental frequency, & o =dip/dt, of the p—arti-
cle's motion. Recently Misner et gl. 2 have calcu-
lated the radiation (GSRa) of scalar waves pro-
duced by a particle in an ultrarelativistic (y -=Ig&»[
xdt/d7. »1) circular geodesic orbit in the Schwarz-

schild geometry. They found strong beaming of
the radiation (half-angle 1/y) and a-spectrum
peaked at high frequencies, 4

P((0) ~ (u eXp(- 2(U/4)qqlg)q

u„;t = 12m" y ~0,

whel e P ((d) ls the intensity intergrated over all
angles. We have calculated the high-frequency
(a»~o) spectra, ' as well as the polarizations,
of electromagnetic and gravitational GSR from
ultrarelativistic cixcular orbits in the Schwarz-
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schild geometry. The high-frequency spectra for
all three types of GSR can be summarized in the
following formula for intensity, integrated over
all angles:

Z(cu) ~~" ' exp(-2~ j(u„,„),

where s is the spin of the radiation field (s = 0 for
scalar, s=1 for electromagnetic, s= 2 for gravi-
tational waves). The angular distribution in all
cases remains highly beamed in the equatorial
plane.

Entirely aside from possible astrophysical con-
sequences of the spectra in (2), the absence of
high-frequency peaks is interesting for more
fundamental reasons. The frequencies we are
discussing are very large [1/&u «(r'/2M)~'2= c '
x(radius of curvature of space-time)j so that geo-
metric optics, that is, propagation on null lines,
would seem to apply. The high-frequency peak
in the synchrotron spectrum is a rather direct
consequence of the "headlight effect" of geomet-
ric optics in flat space-time. It would not be too
surprising if the predictions of flat space-time
geometric optics did not apply to GSR since the
null lines in the Schwarzschild geometry, near
the source, differ greatly from the null lines of
gravitation-free Minkowski space-time. The gra-
vitational-lens effect might be expected to spread
"headlight" beams. The crucial point, however,
is that the same null lines apply to waves of dif-
ferent spin, so that the bending of the null geode-
sics should affect the spectra, angular distribu-
tions, etc. of all the waves in the same way. We

are forced to conclude, in view of (2), that the
qualitative conclusions of geometric optics fail
to apply to GSR. An explanation of this failure
and of the difference in the spectra is important
to the understanding of the generation of radia-
tion in curved space-time.

The details of the calculations of the properties
of the high-frequency radiation, which will be
published elsewhere, are rather intricate. Spin-
weighted spherical harmonics' and the Newman-
Penrose null-tetrad formalism' have proved to
be very useful in simplifying the calculations and
more so in giving insight into the nature of the
physical processes. These techniques, as ap-
plied to perturbation fields, are outlined in a re-
cent paper. ' The insight that arises from these
calculations can be separated from the mathema-
tical details and an understanding of the nature
of GSR generation can be gained by examining
the wave equations and the source terms govern-
ing scalar, electromagnetic, and gravitational

4 = Pu, "(r*)exp(-im(u, t) Y,"(8,p).
l, m

(4)

In the case of ordinary synchrotron radiation, we
we can ignore gravitational effects, so that ~*=~
and the effective potential V(r) is just the centri-
fugal potential l(l +1)/r'. In the case of GSR the
curvature of space-time induces an effective po-
tential barrier which is the same as the centri-
fugal potential for ~ »M but which has a peak
near ~= 3M, and which vanishes exponentially in
r* as r*-—~ (i.e., r- 2M).

For significant production of GSR, the circular
orbits must be near ~= 3M, and hence near the
peak of the effective potential. Misner et al.
solve (3) by viewing it as a problem in barrier
penetration near a potential peak. The usual
WEB technique is inapplicable for such a calcula-
tion. Rather, they approximate the potential near
its peak by a parabola so that the homogeneous
solutions of (3), from which the Green's function
is constructed, are parabolic cylinder functions
of the variable (l/27) ' r*/M near the potential
peak. The requirement that radiation must not
be appreciably damped inside the potential means
that ~2= V» and leads to the important features
of the radiation: l=m=~/&uo and significant in-
tensity for m as large as several times y. A si-
milar approach can be used for ordinary synchro-
tron radiation, with the spherical Bessel func-
tions of the argument (&ur) used as the homoge-
neous solutions of (3). The requirement that
there is small damping of the radiation inside the
potential means that cv'= V(r„„,~) and again leads
to the significant features of the radiation.

With the guidance of the null-tetrad formalism,
equations like (3) can be derived for electromag-
netic and gravitational waves. These equations
are characterized by similar potential barriers,
independent of the type of waves, and by wave
functions u' and u &" (see Table I) related to the
"real" physical field rather than a potential (e.g. ,
for electromagnetism u' is related to the elec-

waves.
The equation governing the generation and prop-

agation of scalar waves of a particular frequency,
in a particular (l,m) multipole mode, is

2 sc
+ [V(r*)—~']u,."= S(l,m),

(3)
r* = r —3M+ 2M ln(r/M 2)—, e = m u„

where S(l,m) is the source term, M is 'the mass
(in units c = G =1) giving rise to the Schwarzschild
geometry, and the scalar field is
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TABLE I. Comparison of scalar, electromagnetic, and gravitational wave descriptions.

Type of
Rad ia t ion

variable in
Wave Equation

Origin of
Wave Equation

Relation of Power
Flux to the Magnitude of

the Wave Variable at Large
Source Term in Wave

Equation

Scalar SC

4 = Scalar Field

Usual scalar wave
equation

e. '~ = 4TIP
pV

(fo) (u'In CI' Density of scalar
charge

((0) for GSR

Q )o for synchro-
tron radiation

Electromagnetic u~ r'e,
spin-weight -1

projection& of the
electromagnetic field
tensor F&~.]
n «r

IKEY
— iE~I

for r»m and r» 1/u)

Combinations of the
second order different'
ial equations that
result from differenti-
ating Maxwell's
equations

Derivatives of the
current J&.

l~
for GSR

for synchro-
tron radiation

Gravitational GW s

I'P t is the spin-
weight -2 projection
of the weyl tensor.

I

UGW ct r3 PR~~~~ + iRn. ann 1

~ oeoe oeoy. ~t

Comb ina tions of the
second order equations
that result from
differentiating the
Bianchi identities

p (~)
GW

2
Second derivatives
of the stress-energy
TP V

(1l for GSR

(o for synchrotron
radiation

Carets denote components on an orthonormal basis. See Ref. 9.

tromagnetic field tensor E~' rather than the vec-
tor potential AP ).

The mathematical structure of the sources in
these equations differ significantly. In the scalar
wave equation, the source is the density of sca-
lar charge. Since the radiation arises from a
scalar charged particle in a circular orbit at so*
the source term in (3) goes as 5(r* —ro*). For
electromagnetic radiation, the wave equation is
constructed by differentiating and combining Max-
well's equations. The source therefore consists
of derivatives of the current density and is char-
acterized by d5(r* - ro*)/dr~. The gravitational
wave equation is constructed by differentiating
and combining the Bianchi identities so that the
source consists of second derivatives of the Ric-
ci tensor, or the stress energy; the source is
characterized then by d'5( *—rrn*)/dr*'

Misner et al.~ show that the intensity of scalar
GSR is of the form

E((u) rr(u exp(- 2u)/~„„).
Since all the radiation fields satisfy the same
type of wave equation and are characterized by
the same effective potentials, the high-frequency
(&d»&u, ) GSR spectra for scalar and electromag-

netic waves are known as soon as the "strength"
of the sources in ~ is known. Since the source
terms are all 6 functions in ~* or their deriva-
tives, the strength of each source is evaluated
by operating with these 6 functions on the homo-
geneous solutions (i.e., by integrating the source
over the Green's function). The strengths thus
evaluated are found to go as co"" for GSR. With
this the power spectrum is easily calculated.
The strength of the electromagnetic source, for
instance, is ~ ' so that lu' I is larger than
lu "I' by cu at large cu. If we combine this with
the fact that's = lu™I'(this follows fromP, ~
tr- E ) and P „oo(t) lu "I, then a comparison with
(3) shows that P, ~ exp(- 2'/co„,.„). This con-
clusion and the analogous one for gravitational
waves are summarized in (2).

For ordinary synchrotron radiation from ac-
celarated particles, the strengths must again be
evaluated. They are now found to go as ~' so
that, by arguments similar to those above, and
by comparison with the known result for electro-
magnetism

P((u) ~& exp(- 2&v/(u„;, )

for all three types of ordinary synchrotron radia-
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tion. For ordinary synchrotron radiation, then,
the prediction of geometric optics is verified, all
the spectra are independent of the spin of the
waves and have high-frequency peaks. We now
consider why the prediction is not valid for GSR.

Mathematically the difference between GSR
spectra and the synchrotron radiation spectra
lies in the different strengths of the sources
when evaluated on the homogeneous solutions for
GSR [parabolic cylinder functions of (I/27)"ar*M]
and the homogeneous solutions for synchrotron
radiation (spherical Bessel functions of &ur) Th. e
homogeneous solutions have a different mathema-
tical form and different forms of the argument
due to the different shape of the potential in the
region of the source. The sources are of differ-
ent strength because differentiating the GSR
Green's function by ~* brings out a factor of or-
der cu

' while differentiating the synchrotron ra-
diation Green's function brings out a factor of or-
der ~. Thus the difference between the strengths
of the sources for GSR and for synchrotron radia-
tion lies in the shapes of the effective potential
at the radial location of the source: For synchro-
tron radiation the effective potential is sharply
changing while for GSR the potential is near its
peak.

These mathematical insights lead very natural-
ly to a physical interpretation. In (3) we can
view V —w', the difference between the effective
potential and the effective energy of the waves,
as the reciprocal of the square of the effective
wavelength. In GSR the slow variation of the ef-
fective potential near the source, where V —cv'
=0 means the wavelength remains very large
near the source. In ordinary synchrotron radia-
tion the quick variation of V(r*) near the source,
where again V(r*) —cv = 0, means that the wave-
length decreases quickly. The geometrical-op-
tics approximation requires a short wavelength,
to be valid. Just as the WKB approximation can
be used for functions V(r*) —cu with first-order
zeros, it is not surprising that the predictions of
geometrical optics are valid for synchrotron ra-

diation. For the barrier peak problem of GSR
neither the WEB method nor geometrical optics
can be expected to give correct conclusions.

Heuristically, near the source the homogeneous
solutions for ordinary synchrotron radiation have
radial derivatives much smaller than time deri-
vatives and therefore do not propagate on null
lines, and are not within the scope of geometric
optics.
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