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maximum. This might be related to the weak
shoulder at I t I= 0.04 (GeV/c)' noted by Miller
et g/. ' Let us now turn to polarization effects.
It is easy to check that Eq. (I) yields zero polar-
ization. This is in fair agreement with the data"
for 0 & It l&0.005 (GeV/c)'.

Finally, it is interesting to observe that in our
model the value of the forward peak is provided
for by the second (constant) "background" term
in Eq. (3) due to u-channel exchange, whereas
the strong decrease with I t l is provided for by
the last term in (3), i.e., by the destructive in-
terference between the background term and the
t-channel term. The t-channel term itself [i.e.,
the first term on the right-hand side of Etl. (3)]
has little influence on the I t I dependence of the
forward peak. This brings us back to the model
suggested by Phillips' where we now possess a
natural explanation for the background term and
for its destructive interference with the OPE am-
plitude.
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Assuming a weak interaction invariant under SU(2}n jg SU(2)I, we show that I-spin con-
servation leads to the rule A(v, e )v, e )-A(v&e (v&e )=A(v, p )v&e } and to other sum

rules for leptonic, semileptonic, and trident production processes. The additional as-
sumption of total isospin conservation yields simple relations for lepton-hadron scatter-
ing. We also show that p decay is forbidden in lowest order for various symmetry
schemes such as the SU(8) and O(8) theories based upon the Konopinski-Mahmoud assign-
ment of lepton number.

Lepton symmetries based upon the observed
spectrum of leptons lead to simple relations
among leptonic and semileptonic processes that
are becoming amenable to experimental observa-
tion. We consider the consequences of assuming
lepton-number conservation, a V -A form for-

the four-fermion interaction, and an invariance
under an SU(2)&@SU(2), symmetry. M spin de-
scribes the p content of a system of leptons, and

I is the weak isospin'; the classification of the
known leptons is given in Table I. The SU(2)„
SSU(2)~ symmetry is of interest both for its di-
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TABLE I. Lepton quantum numbers.
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rect consequences, and also as a possible basis for a renormalizable gauge theory of weak and electro-
magnetic interactions.

Muon-number conservation in leptonic and semileptonic processes requires hM, = O. If total M spin
is also conserved, then purely leptonic processes of the form a+6-c+d depend on two complex inde-
pendent amplitudes, M(0) and M{1). An immediate consequence is the relation

A(v. e Iv.e ) A-(v„e lv„e )=A(v.u Iv„e ),

A(v, e )v,e )=M(1},

A(v„e (v„e )=-,'[M(1)+M(0)],

A(v, iI /VP )=-,'[M(1) -M{0)].
The right-hand side of (1) is related to the y;decay constant. Equation {1)leads to the inequality

l[o(v.e I v,e )]"'-[o'(p„e Iv„e )]'"I-l[o( pu I p„e )]'"I

{2a)

(2b)

1[~(p.e l p.e )J"'l-l[o(p.u I p„e )]"' [f {v-„e lv,e }]"'I' (3b)

o is the experimental cross section divided by the phase-space factor for that process. Equations (3)
are consistent with the present rough limits on the electron neutrino scattering cross section. ~

Tile pl'odllc'tloll of cllal'ged-leptoll pail'8 lly' 81181'ge'tlc v~ s illcldellt oil heavy Illlclel Z (trident pl'odllc
tion) provides a further test of M-spin conservation. Since all hadrons are assumed to have zero M
spin, Eqs. (2b} and (2C) and the relation

A(vp P. ( PpiI ) =M(1)

lead to

A(vp+Z ~ p, iI vy+Z) -A(vp+Z ~ e e Pp+Z) =A(vp+Z ~ jl e v@+8).

A search for such processes is currently under-
%ay.

Immediate consequences of I-spin conserva-
tion are also found in elastic and quasielastic
lepton-hadron scattering. Since hadrons are as-
sumed to have zero M-spin, we obtain simple
relations between amplitudes for electron-type
leptons and muon-type leptons by a reflection in
M space, i.e. , M, =I-M~=-3 and M, = —&-M,

j,

A. (V~p ~ V~p)~A(vffp ~ V~p))

l (e P - e P) =A .l (P P - P P }.
A(v, n- e p) =A(v„n- p. p).

(6a)

(6b)

(6c)

Thus p.-e universality as typified by Eq. (6c) is
generated by an M-spin I'eflection.

The quantum numbers in Table I are such that
the charge of a lepton is related to its lepton num-
ber L and isospin component I,~'~ by the formula

qf I (I) (7)

As a result the suxn I,~'~+I,~ ~ of the z components
of leptonic and hadronic isospins is conserved in

strangeness-conserving semileptonic processes
such as neutron P decay, Z-A P decay, and the
neutrino reactions of Eq. (6). We may therefore
speculate that totgE isospin is conserved in these
processes, lier~

~l = ~(1f"+I'"') =0. (6

Of necessity this assumption requires the exis-
tence of neutral currents and of processes like

(9a)

(9b)

(9c)

Bs=o'(Pffp ~ Vffnlf )/ff(vffp ~ p, PW )q

ff(v„p - v„pv')+&(v„n- v„nlr')

2ff(Pion ~ $1 pff.)'.(10a)

(10b)

vp+p ~ pp+n+If

Pp+tl ~ Vp+I+F,

If the pion-nucleon final state 18 dominated bp' the
4(1236)' and isospin is conserved, then the pro-
cesses of Eqs. (9a), (9b), and (9c) are governed
by a single amplitude gs&s, and the cross-section
ratios
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are predicted to be

The present experimental limits, "
R &0.16, R&0.14, (12)

are consistent with the prediction for R2, but dif-
fer substantially from that for R.

To reconcile the limit on R with total isospin
conservation, we must include an I = —,

' component
in the pion-nucleon final state. ' This gives us
two more amplitudes, ho and h (the subscripts 0
and 1 indicate the total t-channel isospin of the
hadrons), and we can fit Eq. (12) with ratios like

t

h, /g», = 0.3, and h /g3, 2= 0.6. We then find that

the branching ratio for the process in Eq. (9c)
should be

A.-k(vg —vp) =A...~(~ n- V n),

AN, ~,g(v~p v,p) =A„„k(e n e n).

(14a)

(14b)

In addition, because these processes depend upon
only two independent I-spin amplitudes, we ob-
tain the sum rules

R, = &x(v„n-v„nw')/o(v„n -p Pn') = 0.03.

This value is well within the experimental upper
limit of 0.2.'

The use of I, reflections (I,— I, a—nd I,--I,)
and the M =0 rule yields two relations for lepton-
hadron scattering:

A(vp- vp) A(van-—van) =A(van- p p),

A(~ n- ~ n) -A(~ P - u p) =A(~ p - v„n),

and their I, reflection partners,

A(v, p- v,p) -A(v, n- v, n) =A(v, n-e p),
A(e n-e n)-A(e p-e p) =A(e p- v, n).

The present experimental limit' on the ratio R, = o(vp - v„p)/o(v&n- p p),

R, (0.24,

implies, via Eg. (15a), that

R, = o(v„n- v„n)/o(v„n- p p)

(15a)

(15b)

(16a)

(16 )

has the limit 0.24» R~» 2.22.
For more complicated situations such as inclusive reactions, we obtain restrictions upon the isospin

of X in the final state p,"+X"of neutrino-hadron scattering, and we can relate its amplitudes to the
corresponding ones for the v&+X' final state. " As an example, consider

vp+d~ P, +X

V~ +X

(19a)

(19b)

Since the deuteron has zero isospin, X can have either I = 0 or I =1. In the case Ix =0, the conserva-
tion of isospin implies that the amplitude A(v&d- g (X )I,) must vanish, and in the case of l~= 1 it
requires

A(v„d - p, (X")q-,) = -&2A(vied —vq(X')I-, ).

Having surveyed some of the consequences of
the SU(2)„8SU(2)z lepton symmetry scheme, we
now give our reasons for choosing it rather than
some other groups. Since there are four lep-
ton states, the most obvious alternative to our
scheme is an SU(4) in which the leptons g-=(v, ,e, v„, p ) are assigned to the representation 4
and their antiparticles P to a 4*. No SU(4) sym-
metric interaction constructed from the product
($&& g) x (gx g) contains the terms (7&p)x (e v, ),,
and hence p,-meson decay is not allowed. It may

(20)

only occur by breaking the SU(4) symmetry. Since
we prefer to have a scheme in which the process
p -e +P, + v& is engendered by a symmetric in-
teraction in lowest order, we reject SU(4) as a
possible lepton symmetry.

An alternative to SU(4) is the symplectic group
Sp(4) which contains as a subgroup SU(2),O(2)„,
and which can accommodate P in its four-dimen-
sional representation. In this scheme the sym-
metric four-fermion interactions. do:,contain
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terms giving rise to p. decay, but they are always
of the form

(21)

Because we use V-A for the space-time interac-
tion, the two terms in Eq. (21) cancel one another
by virtue of the symmetry of V-A under Fierz
transformations. Once again, we find that p, de-
cay must break the symmetry.

Various authors have considered schemes with
the Konopinski-Mahmoud~' L =1 triplet y= (e, v,
it+) as their basis. If we assign them to the 3 re-
presentation of an SU(3), and their antiparticles
to a 3*, then we find that exactly as in the case
of SU(4), SU(3) symmetric interactions of the
type (pxy) x(pxy) do not engender tt decay/'
This, in fact, is a general result: If leptons be-
have as the quarks of an SU(n) symmetry, lt de-
cay is forbidden in lowest order and only takes
place by breaking that symmetry. As an alterna-
tive to SU(3), we could assign y to the three-di-
mensional representation of an O(3)." In this
case the symmetric interaction does give rise
to p. decay, but because e and p+ are in the same
multiplet, it cannot give rise to a pure V -A in-
teraction. Thus we must again reject this alter-
native.

To summarize, our principal conclusions are:
(1) The assumption of an invariance under the

SU(2)„SU(2)I symmetry for leptonic and semi-
leptonic interactions leads to simple sum rules
for lepton-lepton scattering and for trident pro-
duction. These relations, based on invariance
under M spin, are analogous to U-spin scattering
amplitude relations in strong interactions.

(2) The additional assumption of total isospin
conservation provides us with additional rela-
tions for lepton-hadron scattering which may
soon be subject to experimental test.

(3) A simple criterion for ruling out various
symmetries is whether or not p. decay breaks the
symmetry. Weinberg-type theories based on the
Konopinski-Mahmoud lepton-number assignment,
and other SU(4), Sp(4), and SU(3) theories in
which the leptons are in the fundamental repre-
sentation, are ruled out.

Finally, we note that our theory does not ~e-
quine the existence of heavy leptons. If they are
found, however, they will have to form complete
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