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measurable V 's as y's, in the ratio of y's over tota1
V 's. This yielded the total of 154 events quoted in
Table I.
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The forward peak in n-P charge-exchange reactions is accounted for by a simp1e Born
model. The value of the peak is shown to be due to u-channel & exchange, whereas its
shape is found to be determined by the interference between the above mentioned m' con-
tribution and a r+ exchange in the t channe1. The agreement with the data is fairly good
for all incident momenta above 8 GeV/c and for a range of momentum transfer 0& It I

& 0.005 (GeV/c} .
Forward-direction n-p charge-exchange scat-

tering exhibits a narrow peak' characteristic of t-
channel pion exchange, i.e., a peak whose width

is about ~„'. One-pion exchange (OPE) calcula-
tions in the Born model yield, however, a vanish-
ing contribution in the forward direction. Possi-
ble elimination of this disagreement is offered by
an absorptive modification of the OPE Born am-
plitude. ' Phillips' has accounted for the forward
peak by a different, though not completely unre-
lated, method, namely, by the addi. tion of a slow-

ly varying background which interferes destruc-
tively with the OPE amplitude. The absorptive
corrections as well as Phillips's background term
are treated phenomenologically and fitted to the
data. Muzinich4 attempted to explain the data by

a single Reggeized p exchange whose parameters
were fitted to the data. Phillips in a further pub-
lication' showed that such a model cannot fit all
the data and must, moreover, possess a rapidly
varying residue function.

Islam and Preist' suggested a Born model in
which the p gnd m are exchanged both. i.n the t pygmy

the g channel. Their p is coupled only electrical-
ly to the nucleon, and the fitted coupling constant
is smaller than the commonly accepted value.
This is probably due to the non-Reggeized treat-
ment of the p. The sharp forward peak is ob-
tained by assigning a steep form factor to the
p-nucleon vertex. Another strange feature of
Ref. 6 is curve 5 in Fig. 2 which shows a very
low pion contribution in the forward direction in
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contrast to our following result of the Same cal-
culation. A modification of the lower partial
waves of the OPE amplitude is also responsible
for the success of Byers's' calculation of the for-
ward peak. It is this modification which replaces
the troublesome factor I; in the amplitude by m„'
[see Eqs. (1) and (19), and footnote 9 in Ref. 7],
thereby eliminating the forward dip. The same
substitution, i.e., replacement of the trouble-
some g by pg„1s essentially also the content of

t

%illiams's' procedux e of eliminating Kronecker

5's in the partial-wave expansion. These re-
placements in the OPE amplitude, however, look
rather gd hoc, and a more natural explanation of
the forward peak seems desirable.

Recalling the success of R1chtex' s explana-
tion"0 of the forward peak in charged-pion photo-
production, one is tempted to look for a similar
explanation in n-p charge exchange, i.e., one
takes, in addition to the g'exchange in the t
channel, the m' exchange in the u channel and
looks for the effect of the interference term. The
co11esponding scattering amplitude ls giveQ by

T=(2s) 'g', u(p, ')y,u(p„) u(p„')y,u(p~)+, u(p„')y, u(p„) u(p, '}y,u(p, ),

where p~ and p„are the momenta of the ingoing
proton and neutron, respectively, and p ' andp„'
the corresponding outgoing momenta. The mo-
mentum transfer t is defined by t= (p~'-p-„}' and
u -=(p„'-p„)'. The pion-nucleon coupling constant

g is taken to be g'/4s = 14.7.
Performing the trace calculations one obtains

for the unpolarized cross section at s» ng~'

to hold also fox the higher incident momenta of
Engler et gE.' and is in full agreement" with the
s ' behavior of der/dt. Thus, we need to com-
pare do r/dt with dos/dt at only one value of p
which we arbitrarily choose to be p = 8 GeV/c.
A convenient way to undertake this comparison
is to form the ratio

do, &g''I' s 3t'+m„'
dt &4mj s' (t —m„'}'' (2)

d0's/dt
der/dt

'

The right-hand side of this equation consists, in
fact, of three contributions, i.e.,

(3)

The first term on the right-hand side of (3) is
due to m+ exchange in the I; channel, the second
term is due to m exchange in the u channel, while
the last term is due to the interference of these
two contributions. Equation (2) is expected to de-
scribe the data only for a small range of Ig I up
to It I =m,'= 0.02 (GeV/c)'. More precisely let us
lloie tllRt der/dt rapidly decl'eRses fl'0111 1ts VRlue
at t=0 to & of this value at It 1=m,'/3=0. 007
(GeV/c)' where it reaches its minimal value.
For It I & m,'/3, der/dt again increases with It I

in contrast to the decreasing behavior of the ex-
perimental cross section des/dt. Equation (2)
can therefore be expected to hold only fox 0 & ) g I

& 0.007 (GeV/c)'. We shall now show that in this
range of It I Eq. (2} indeed accounts for the ob-
served experimental data.

Consider first the energy dependence of dos/dt.
It was shown by Miller et al.' (see their Fig. 2)
that for incident momenta p in the range 3 &p
&11.75 (GeV/c} do /dt=A(t}p "&'l with n(t) =2"
for 0 & It I& m„'/3. This energy b'ehavior continues

It turns out that for the data of Engler et gl. »

which is given numerically (see their Table I),
this ratio is constant, within experimental error,
in the range 0 & It I&0.005 (GeV/c)'. Unfortunate-
ly, the ratio is Not 1 but 1.9. However, it has
been noted in Ref. 1 that the data may contain a
systematic error factor of 2. In fact, the data of
Manning et gE.»2 have the same shape as the data
in Ref. 1, but are reduced by a factor of 2.5. In
other words, for Manning's data A(t) =0.8 in the
range 0 & It I& 0.005 (GeV/c)'. Let us also remark
that a similar discrepancy of a factor of -2 be-
tween experiment and the Born amplitude also
exists in charged-pion photoproduction (Fig. 2 of
Ref. 10). The important point to note, however,
is that the shape as well as the order of magni-
tude of the forward peak are correctly given by
the Born amplitude in gogh cases.

It is worthwhile to add at. this point a somewhat
speculative remark. It is mell known that, in
order to quench the relatively strong increase of
der/dt beyond it I=0.007 (GeV/c)', some sort of
absorptive corrections should be applied. It
could happen that as a result of the two competing
trends, i.e., quenching effect versus increasirlg
Born amplitude, there might remain somewhere
at It I &0.007 (GeV/c)' a residual shoulder or
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maximum. This might be related to the weak
shoulder at I t I= 0.04 (GeV/c)' noted by Miller
et g/. ' Let us now turn to polarization effects.
It is easy to check that Eq. (I) yields zero polar-
ization. This is in fair agreement with the data"
for 0 & It l&0.005 (GeV/c)'.

Finally, it is interesting to observe that in our
model the value of the forward peak is provided
for by the second (constant) "background" term
in Eq. (3) due to u-channel exchange, whereas
the strong decrease with I t l is provided for by
the last term in (3), i.e., by the destructive in-
terference between the background term and the
t-channel term. The t-channel term itself [i.e.,
the first term on the right-hand side of Etl. (3)]
has little influence on the I t I dependence of the
forward peak. This brings us back to the model
suggested by Phillips' where we now possess a
natural explanation for the background term and
for its destructive interference with the OPE am-
plitude.
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Assuming a weak interaction invariant under SU(2}n jg SU(2)I, we show that I-spin con-
servation leads to the rule A(v, e )v, e )-A(v&e (v&e )=A(v, p )v&e } and to other sum

rules for leptonic, semileptonic, and trident production processes. The additional as-
sumption of total isospin conservation yields simple relations for lepton-hadron scatter-
ing. We also show that p decay is forbidden in lowest order for various symmetry
schemes such as the SU(8) and O(8) theories based upon the Konopinski-Mahmoud assign-
ment of lepton number.

Lepton symmetries based upon the observed
spectrum of leptons lead to simple relations
among leptonic and semileptonic processes that
are becoming amenable to experimental observa-
tion. We consider the consequences of assuming
lepton-number conservation, a V -A form for-

the four-fermion interaction, and an invariance
under an SU(2)&@SU(2), symmetry. M spin de-
scribes the p content of a system of leptons, and

I is the weak isospin'; the classification of the
known leptons is given in Table I. The SU(2)„
SSU(2)~ symmetry is of interest both for its di-

Lepton

Ve

e

Vp

p
Ve

p+

Vp
p+

1/2
1/2- 1/2

-1/2
-1/2
—,1/2

1/2
1/2

1/2
—1/2

1/2
—1/2
—1/2

1/2- 1/2
1/2

Lepton No.

1
1
1
1

—1
-1

.-1
—1

TABLE I. Lepton quantum numbers.


