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tently somewhat smaller in magnitude than that
predicted by theory, agreement between theory
and numerical experiment is within about 5%.
Similar agreement is found for comparison of the
phases. ~

As a direct result of observations of anomalous
growth of electrostatic longitudinal modes in com-
puter simulations of the VVeibel instability, a sec-
ond-order analysis was done which describes the
coupling of two purely growing transverse mag-
netostatic modes to drive a longitudinal electro-
static mode. A direct comparison of numerical
experiment and second-order theory gives agree-
ment within 5% for both the magnitude and phase
of the coupling constants.
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%e demonstrate that a circularly polarized electromagnetic wave propagating through
a cold plasma and strong enough to make electrons relativistic (v =sE, /m c~,—g 1) is sub-
ject to a new pinching type of instability. The linearized equations are solved exactly,
without the necessity of introducing an infinite determinant. This allows our results to
describe the transition from nonrelativistic to extreme-relativistic electron motion. In
the relativistic limit, the growth rates are as high as 0.47~, .

%e describe a new model to study the linear corresponds to v, «M;/m, . The driver is at
stability of a relativistically strong electromag- first considered to be near its reflection point so
netic plasma wave with circular polarization. that its wave vector k, and magnetic field are
The treatment is unusual in that it applies to a zero. (Finite-wavelength effects are taken up la-
wide range of strengths of the large-amplitude 'tel'. ) From 't11e self consistent eguillbrium of a
driving wave. This is because we are able to circularly polarized wave, ' ' it can be shown that
solve the linearized equations exactly, rather
than by approximate truncation of an infinite
determinant. The unstable mode is qualitatively a relation which we shall assume throughout the
different from those found in previous studies of treatment which follows. The background ions
weaker linearly polarized waves"'. It results in form an infinitely heavy uniform medium for
a pinching of azimuthal current in the plasma, most (but not all) of this work.
and is purely growing when the driver has infinite An uncertainty arises in connection with the
wavelength. Furthermore, the instability has a dc magnetic field generated by the circular mo-
very large growth rate (0.47~,) when the driver tion of the plasma electrons. This phenomenon,
is strong enough to make plasma electrons re- known as the inverse Faraday effect, has been
lativistic. documented experimentally' and discussed theo-

Let us start with a uniform infinite-medium retically by Steiger and %oods. ' Because the
model of a cold, dissipationless plasma contain- circular motion of the electrons is analogous to
ing a large-amplitude circularly polarized driv- a magnetization density, the actual value of this
ing wave E,=E,(xcos~,t+y sinu&, t), strong enough magnetic field depends on the geometry of the
to make electrons, but not ions, relativistic. In plasma, the maximum value being reached for
terms of the dimensionless strength parameter solenoidal geometries. The uncertaintl). arises
of the driver wave v, —= eE,/m, c~„ this condition because one can consider an infinite medium as
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the limit of either a long thin solenoid or a flat perpendicular to E„and so linearized quantities
pancake. have space dependence exp(ill). In the lab frame,

We have neglected the inverse Faraday mag- we linearize the electron velocity and Lorentz
netic field. Two arguments can be presented to factor as vt vp+
justify this neglect. First, Fig. 5 of Steiger and
Woods' shows that even the maximum magnetic
field has a sma11 effect on a self-consistent cir- The basic equations we sall use are the elec-

tron continuity equation, the relativistic Lorentz
cularly polarized wave. Second, the character-
istic time for deformation of a medium due to the orce equa ion for electrons, and the wave equa-

gradient of the inverse Farada ma et re — tions for vector and scalar Potentials in the Co
e inverse ara ay magne ic pres-

sure becomes long compared to the instability lomb au e. The wave e uations for the oten-

growth times derived below as the medium be- tials are

comes large. The reason is that the inverse V'A-c 'B A/Bt'= —4' 'nev+c '%By/Bt,

Faraday magnetic field will produce at most a
finite pressure drop while the inertia tends to

We solve the linearized equations in a modified

inverse Faraday magnetic field awaits further form, derived according to the following stePs.

work, the uncertainty of its value does not affect Into the x and corn onents of the wave e uation

the conclusions regarding stability presented
for A, substitute for v and v ex ressions ob-

here (except for factors of order unity). There tained from the Lorentz force equation. These

are two reasons for this statement: First the dc
transverse components of the force e uation ex-o po e o he force equation ex-

field does not qualitatively change the zero-order press conservation of canonical momentum in
first order:

electron motion from circles, and the relative
magnitude of zero-order electric and magnetic , =-m, (y,v„+y,v,)+ eA, /c = P.

fields (Fig. 5 of Ref. 7). Second, because the Substitute for the scalar'potential 4wen, /O'. Next,
important perturbed velocities are along the in- take the time derivative of the continuity equa-
verse Faraday field, this field does not change tion, and substitute for dv„/dt the expression ob-

the dynamics of the unstable perturbation. tained from the z component of the Lorentz force
The wave vector of the perturbation is assumed equation. The resulting system of coupled lin-

earized equations is

d'A, „/dt'+ k'c'A, „+z~, '(1+ vo') 3~'[A,„(1+vo' cos'&u, t) + A„(v,' cos &a,t sine, t)]
=4pec vo(1+ vo') '~n, sin(got, (1)

d'A„/dt2+&'c'A„+ ~,'(1+ p, ') '~'[A, „(v,'cos~, tsin&u, t)+A, „(1+p, 'sin'&u, t)]
= —4wec'v, (1+ v, ') '~n, cos(u, t, (2)

d'n, /dt'+op~, '(1+ v, ') '~n, =en,k'p, m '(1+v,') '(A, „sin&@,t A»cos-&u, t) . (3)

Equations (1) and (2) together are the curlB, Maxwell equation, since k'c'A, = c'curlB, . The d'A, /dt'

terms represent the displacement current, the last term on the left side is proportional to the current

n,v„and the driving term is the current n, v,. Equation (3) is the time derivative of the electron con-

tinuity equation. The last term on the left side is proportional to the electrostatic restoring force

eE„, while the driving term represents the vp&&B, force on the electrons. We emphasize that the

terms which drive this system are the current n&vp and the v, &&8, force on the electrons.
To find the exact dispersion relation for Eqs. (1)-(3) we introduce two new dependent variables for

the vector potential which rotate with the circularly polarized driver. These new variables are n,
-=A, „cost@,t+A„since, t, and p, =-A,„sine;t -A»cos~, t. The third dependent variable is still n„ the

perturbed electron density. When Eqs. (1)—(3) are rewritten in terms of n„p„and n„ the new equa-

tions have constant coefficients; all the periodic coefficents are eliminated by the change of variables.
Solutions for the new system therefore are proportional to the exponentials exp(- i'd), and the condi-

tion for a nontrivial solution gives a dispersion relation in the form of a three-by-three determinant:

k c + (dye (1 + vo ) —(d —(Oo 0

2Z(d(dp k c + &dpe (1+ vo ) —(d —(do

—O'c'vo'(1+ vo')

2(] + p 2) 1/2 —P

2(1 +p 2) lg ~2

(4)
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This dispersion relation is a sixth-degree poly-
nomial in co,

' its roots are either pure real or
pure imaginary. Hence the unstable mode is
purely growing for a driver of infinite wavelength.

Asymptotic analytic expressions for the max-
imum growth rate and most unstable wave num-
ber, assuming an infinite-wavelength circularly
polarized driver, can be obtained from Eq. (4) in
the two limits v, »1 and v, «1. Define a dimen-
sionless growth rate and wave number by I'
—= —iv/v» x=—k'c'/u&0'. For vo»1, Eq. (4) then
simplifies to

I'+ I'(2x+ 4) + I'(x'+ 3) —x = 0. (5)

Equation (5) indicates that the growth rate is in-
dependent of v, . The maximum growth rate is

,„=0.47mp, with the most unstable x equal to
2.0. A good approximation to this result can be
derived by simply retaining only the last two
terms in Eq. (5), yielding 1,„=0.54, with the
most unstable x= v3.

In the opposite limit vp «1, corresponding to a
weak driving field, dispersion relation (4) be-
comes

I" + 5I'+4I"'+x' —v 'x=0

for values of x small compared to unity. In this
case the maximum growth rate is I',„=v, '/4,
and the most unstable wave number is x = v, '/2.

Figure 1 shows the maximum growth rates
given by the numerical solution of Eq. (4). The
two asymptotic results derived above are appar-
ent. The solid curve in Fig. 2 shows the depen-
dence of growth rate on wave number for v, =100,
if ions are assumed infinitely heavy. For vp

growth rates at large and small x can be derived

analytically:

r'=x/3 for x«1,
= [(v,'/x) —1](1+v, ') ' for x)) 1.

The second expression shows that for very small
wavelengths of the perturbation, the plasma sim-
ply undergoes stable oscillations.

The physical mechanism for instability is the
following: An initial perturbation n, gives rise
to the current J»=n, v,e, which produces a per-
turbed magnetic field 8,. Thus there is a force
on the electrons equal to e(E„2+c 'v, XB,) acting
in the z direction. The resulting z motion acts
back on the original density perturbation through
the equation of continuity. Whenever the vp ~By
magnetic force overcomes the electrostatic re-
storing force E„, instability results. If ions as
well as electrons are allowed to move in the per-
turbation, the result is to reduce the restoring
force E„on the electrons, and hence to raise the
growth rate. The magnitude of this effect is
shown in Fig. 2 which presents the normalized
growth rate as a function of perturbation wave
number for infinite and hydrogen mass ratios.
In both cases the instability produces circularly
polarized transverse electric and magnetic per-
turbations, as well as density perturbations and
longitudinal electrostatic fields.

When ions are allowed to move in the perturbed
fields, the growth rate of small-wavelength per-
turbations for vp»1 and kp=0 stays constant at
nearly the maximum value. This is in marked
contrast to the fixed-ion case (see the right-hand
side of Fig. 2) where the instability disappears
for small perturbation wavelengths. For moving
ions the asymptotic growth rate for large x
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FIG. 1. Dependence of the maximum growth rate
pr ~ on the strength vo of the driving wave. The fre-
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FIG. 2. Dependence of growth rate y on the wave num-
ber k of the perturbation, for a fixed driver strength
vo =100. The frequency of the driver is ~0. The solid
curve shows the growth rate for ions of infinite mass,
while the dashed curve is for hydrogen ions.
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-=k, 'c'/&u, ' is given by

y —= &u, (v,m, /M;)'~'

for

X » [Vo + (VOB1~/M~)]

(M, /4m, )' «vc «M;/m, .
In regions of lower density where a strong

driving wave has a finite wavelength and v, »1,
a transformation to rotating variables similar
to the one described above allows exact solution
of the linearized equations. ' Details of the cal-
culation will be published elsewhere. The impor-
tant results can be summaried as follows: In
the limit of low plasma densities where e -=(&u~,'/
~,')(1+ p, ') '~' is small compared to unity, when
the driver has nearly vacuum wavelength, the
maximum growth rate with fixed ions occurs for
I k I= 2k, . The maximum growth rate is y = ~3
&&a'~~0, for e«1. By unfolding the transforma-
tion of linearized quantities to the rotating co-
ordinate system, the unstable modes can be
shown to lowest order in c to consist of (1) a for-
ward-propagating plasma oscillation with fre-
quency 2e"&u, and wave number 2k„and (2) a
backward propagating circularly polarized elec-
tromagnetic wave with frequency &u, (1 —e' '/2)
and wave number -k,. These frequencies and
wave numbers obey the matching conditions for
three-wave decay instabilities. '

In the case pp +&1, the pinching instabilities
discussed in this Letter must compete with the
familiar electrostatic parametric instability,
for which the maximum growth rate is9 y „- (m, /M;)' 'v~, . The electromagnetic pinching
instability with k, = 0 and M, = ~ was shown above
to have a maximum growth rate y „=4vo'~0 in
this regime. Hence it will dominate the para-
metric instability if v, ~ 0.6 (for a hydrogen plas-
ma). For v, «1 the effects of pressure are not

negligible in general, since the destabilizing v,
~ By force is opposed by pressure gradients.

The results presented here indicate that con-
siderable anomalous absorption of strong elec-
tromagnetic waves may occur when the waves
are near their reflection point. The instability
is capable of converting the relativistic energy
of the driving wave into particle motions. For
example, the perturbed electrostatic field can
accelerate or trap electrons, because its phase
velocity is zero when the driver is at its reflec-
tion point, and less than c when the driver has

finite wavelength. Furthermore, large energy
densities in the form of perturbed magnetic fields
are expected to be produced.

In regions of lower density, the growth of back-
ward propagating electromagnetic waves may
cause an anomalous reflection of a strong elec-
tromagnetic wave.

This new instability may have interesting im-
plications for the two main applications of strong
electromagnetic waves, namely, the laser-plas-
ma interaction and pulsar environments, if ro-
tating neutron stars emit strong electromagnetic
radiation at their rotation frequency. In the case
of the pulsar centered in the Crab nebula, for
example, electrostatic fields produced by this
type of instability may provide a way to acceler-
ate particles in the nebula. This electrostatic
acceleration might complement other accelera-
tion mechanisms proposed for the Crab, "which
rely on electromagnetic acceleration of particles
in the field of the strong wave itself.
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