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washed out completely.
Clearly, more experimental tests of these

ideas are needed. In particular, we suggest ac-
curate measureme~ts of s'p elastic differential
cross sections at fixed angles in the region 0.4
~ cos 8 ~ 0.8, 1.8 ~p & 5.5 GeV/c. Ideally these
experiments should be carried at small incident
momentum steps. ' We also suggest s~m~lar test-
ing of all pure-isospin 8 = 1 two-body reactions,
for which our model gives essentially the same
predictions.

I am indebted to R. Stanek and N. Thalassinos
for helping with some of the interpolations and
to Erich J. Hoff for plotting many graphs.

~G. T, Hoff, Phys, Bev, 154, 1831 (1967), and un-
published.

We have used the fixed-angle data of B. A. Sidwell
et a/. , Phys„Hev. D 8, 1598 (1971), and of G. E. Kal-
mus et a/. , Phys. Bev. D 4, 676 (1971), the data of
W. Husza et o/. , Phys. Bev. 180, 1889 (1969), and older
data taken from G. Giacomelli, P. Pini, and S. Stagni,
CERN Beport No. CERN-HERA 69-1, 1969 (unpub-
lished).

Ne were led to this assumption by considerations of
a practical nature a few years ago. See G. T. Hoff,
Phys. Hev. 18, 816 (1967).

Another way of stating this assumption is by saying
that there is a single pole in the complex energy plane

associated with each level.
'Rising phases have been used by other authors in «

scattering: A. M. Gleeson, %, J. Meggs, and M. Park-
inson, Phys. Hev. Lett. 25, 74 (1970). Their approach
is, however, somewhat different from ours.

These properties are easily obtained from expres-
sions given by Dalitz for the background contribution
to each partial wave. See B. N. Dalitz, Annu. Bev.
Nucl. Sci. 18, 889 (1968).

'%hen y is equal to either 2& or —~&&. This situation
arises in particular when the background amplitudes
are purely imaginary.

When V is equal to either 2& or -2& a change of
phase by the amount m gives rise to an inQection point,
Dot to a cusp,

~An exception to this statement is the case when the
background-resonance interference and resonance con-
tributions cancel each other at a given angle.

~OThe extreme distortion of the sinusoidal curve in
Fig. 3 could be interpreted as due to a strong depar-
ture of the background from a h t dependence (the total
cross section is still increasing in this energy region).

~~It is currently believed that there are five estab-
lished resonances between 0.82 and 2.08 Gev/c:
~(1650), ~(1670), ~(1890), ~(1910), and ~(1950),
with full widths ranging from 165 to 325 MeV. The
average spread for each resonance energy (total width)
is 87 MeV (126 MeV). See P, Sodingst I/„Phys. Lett.
S9a, 1 (1972).
' Efforts shoulo. be made to find a solution to all the

available r+P elastic data constrained to satisfy our
basic assumptions.
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We suggest, contrary to the spirit of the Amati-Pubini-Stanghellini multiperipheral
model and a p ladder theory, that the relation op(0) =1 is independent of the strength of
the strong interaction, We propose that the "zero strength" (g—0) limit of a future cor-
rect strong-interaction theory will collapse into a vector-type field theory, guaranteeing
o'p(0) =1 even as g 0. The intercept of the leading non-Pomeranchukon exchange then
becomes 'lower when g increases. Specific models which are consistent with this ap-
proach lead to a new relation between this intercept and the moments of the multiplicity
dl strlbutlon.

The nature of the Pomeranchuk singularity has
always been a mystery. Empirically, we know

that all total hadronic cross sections seem to ap-
proach a constant at high energies (modulo fac-
tors of lns). Recent data' from Serpukhov, the
National Accelerator Laboratory, and the Inter-
secting Storage Rings seem to confirm this trend,
which has earlier been observed at lower ener-
gies. It is often said that the constancy of 0„,is

due to the unit intercept of the Pomeranchuk sin-
gularity, which dominates the imaginary part of
the forward elastic scattering amplitude. Need-
less to say, this statement does not clarify the
nature of this singularity, nor does it explain
why o.p(0) = 1.

The solution to both of these puzzles is almost
certainly buried in the unitarity relation which
simply states that the sum of all the cross sec-
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tions for specific final states adds up to the total
cross section and must therefore produce the
Pomeranchuk singularity. One way of expressing
0„,is in terms of the trivial relation

0're~= n&n~

where g„ is the cross section for producing n
hadrons in the final state. Experimentally, we
know that over the energy range in which 0„,
stays roughly constant, the various 0„'s vary
dramatically Ie.g. , between P&,b=13' and 300
GSV/c ' o„,(pp) changes by less than 5'po, while
o(pp- 4 prongs) drops by a factor of 2.7, and
c(pp- 8 prongs) increases by a factor of 10]. We
therefore have to understand how a sum of enw"-
gy-dependent partial cross sections is able to
produce an energy-indePendent total cross sec-
tion, thereby creating the Pomeranehuk singular-
ity at np(0)=1.

In this note we address ourselves to the ques-
tion: Why does the Pomeranehuk singularity
have a unit intercept'P We propose a general
answer to this question and discuss various con-
sequences of our proposal within the framework
of simple models.

Before we begin our discussion, we must, how-
ever, mention an important technical point. We
have quoted the experimental observation that the
o„'s vary significantly with energy. The strong
energy dependence of the two-, four-, and six-
prong pp cross sections indicates that most of
the contributions to a given O„come from nondif-
fractive mechanisms, involving no Pomeranchuk-
on exchange in the production of a given n-par-
ticle final state. The sum of these nondiffractiee
contributions for any given a„drops like a power
of s as s-~. Now, in reality, there probably is
a small diffractive contribution to any given 0„
(especially for small n values). For the sake of
simplicity we ignore these diffractive contribu-
tions, assuming that the sum of all diffractive
terms in the various g„'s add to a (small) con-
stant fraction of o „,&

while the sum of all non-
diffraetive, energy-dependent pieces of the o„'s
adds to another (large) constant fraction of o„,.'
In the following, we focus our attention on the
latter term, which has the property of a constant
total cross section produced by a sum of terms,
each of which falls like a power of s. The in-
clusion of the small diffractive terms would
make our discussion more cumbersome, while
none of the essential features of our conclusions
would change.

We are now ready for our basic question: How

do the various o „'s add up to a constant O„„pro-
ducing R slngularlty Rt &p(0) = 17

There are two basic approaches to this question.
The first approach relates the value of ap(0) to
the strength of the strong interactions. More
precisely, within the framework of specific mod-
els which advocate this approach np(0) is deter-
mined by an equation involving a strong-interac-
tion coupling constant. In such models, we face
the following proposition: Irad nature selected a
somesohat weaker (or stronger) strong interac
tion, n& (0) lvould be smaller (or larger) than 2.
Tile most famous (Rnd eR1"llesi) 111odel of tllls
variety is the Amati-Fubirn-Stanghellini (AFS)
multiperipheral model' involving the exchange of
spin-0 mesons. Later models involve field-
theoretieal exercises with cp' interactions. ' In
all of these cases, every o„obeys

o„=(glns)"s ',

and the constancy of v„, can be achieved only if
the coupling constant g has a certain specific
value. In particular, the same models, in the
limit g- 0, would predict o„,-s, yielding
np(0) = —1. Many versions of this approach exist
in the literature and in all of them

(3)

where f(g) is a function of the coupling constant,
obeying f(g)- 0 as g- 0. On the other hand, the
pnezgy dependence of any given o„ in such models
is independent of g IEq. (2)]. The value op(0) = 1
seems to be an "accident" in this type of ap-
proach. We feel that such accidents are very
unlikely and that the obserued constancy of g„,
is much more fundamental.

We therefore prefer a second approach which
can be formulated in the following way: We as-
sume that np(0) = 1 is a fundamental result of
strong-interaction dynamics, a result which
would remain stable under an (imaginary) varia
tlon of the strength of the strong intera, ctions. 1n
particular, we believe that if we consider the
g- 0 limit of a future correct theory of the strong
interactions, we would still have np(0) = 1.' ln
principle, there is a very simple way of achiev-
ing thi.s. Any field-theory model involving vector
exchanges (such as a massless Yang-Mills theo-
ry) would yield a total cross section which is con-
stant in energy in the limit g-0. If we then start
with such a theory for g-0 and gradually increase
g, we would be starting with ap(0) = 1, and would
be prevented from increasing n~(0) by the Frois-
sart bound. A complete unitary theory of the
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strong interactions may be a dream for the future,
but it is clear that any such theory that would

collapse into a vector field theory for g-0 would

have n~(0) = 1 for all possible strengths of the
strong interactions. It is also reasonable to as-
sume that the g-0 limit of a future strong-inter-
action theory would collapse into some kind of a
field theory, and a vector theory is the only one

with o.p(0) = 1 for g -0.
What will be the energy dependence of the var-

ious cr„'s in such a theory' For g-0, every 0„
will involve simple vector exchange diagrams,
and will therefore remain constant in energy
(modulo lns terms). Furthermore, as g-0,
o„/o'„,-0 and v, -o„,. If we now gradually in-
crease g, the high-multiplicity cross sections
will become more and more important. However,
since the total cross section must remain ener-

gy independent, each individual v„will probably
fall faster and faster with s, and the simple vec-
tor exchange will be replaced by the exchange of
a more complicated (unitarized, renormalized)
object. We may assume the parametrization

s2a~(g) -2 (4)

where n„(g) is the t=0 intercept of the leading
non-Pomeranchukon exchange, for a coupling
constant g (ignoring lns terms). We then find that

~~(g) = 1

while as g increases o,„(g) decreases below 1!
In other words, in the g-0 limit, the leading non-

Pomeranchukon exchange is our vector field.
When g increases, each O„begins to fall as s-~
and as moves away from a unit intercept (and
probably acquires a t dependence as well). The

strong' the interaction is, the loaves the inter-
cept of the leading non-Pomeranchuhon term!

The contrast between our proposal and the first
(AFS or rp') approach" is now clear. In our case
np = 1 for all g, while a„=1 —E(g), where E(g)) 0, E(0) =0. In the first approach, a~=0 for all

g while n p
= —1+f(g), where f(g) )0, f(0) = 0.

Until this point we have concentrated on the
somewhat imaginary possibility of varying the
strength of the strong interaction. Such a discus-
sion might be interesting, but it cannot lead to
experimental tests of our theoretical conjectures.
The only way to test such considerations is to
consider the g dependence of several measurable
quantities and to eliminate g, thereby deriving
new relations between previously unrelated quan-
tities. We will now study this possibility within
the framework of several simple models.

(y~ = 1 —pg.

However, in the same model the average multi-
plicity (n) is given by

(n), „= c, lns,

where c, =g. We therefore find

where both n~ and c, are measurable quantities
(they can be deduced, respectively, from the
energy dependence of o„and (n)). We see im-
mediately from Eq. (9) that larger multiplicities
(stronger interaction! ) are necessarily associat-
ed with a lower intercept for the meson traj ec
tOXQ.

A more realistic model would abandon the as-
sumption of an independent emission of the final
hadrons. Any model in which 0„ is dominated by
tree diagrams (in which the internal lines may
be Reggeons, sums of direct channel resonances,
etc.) would lead to a relation of the form

v„=g"f(n, s)s' & ~ (10)

where the s dependence in f(n, s) is at most log-
arithmic as s-~, and o.s(g) is the t=0 intercept
of the leading non-Pomeranchukon traj ectory.
All reasonable multiperipheral and multi-Regge
models as well as most versions of the dual-
resonance model (with no loops) must obey Eq.
(10).

We now assume

c c 0 t.
= +n o'

n

Hence

Q„g"f(n, s)- A'(g)s' '"&(').

We now define the generating function

q(z) = Qz"v„,

(12)

The simplest and most naive realization of our
approach is the Reggeistic multiperipheral mod-
el of Chew and Pignotti. ' These authors assume
that every v„ is accounted for by a simple ladder
diagram involving the exchange of one type of
meson trajectory n~. They further assume that
the produced hadrons are independently emitted.
They find (g is the squared coupling constant)

(g lns)"
5 n t

If we further assume that g„,-s P ' '=const,
we obtain

1710
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such that the multiplicity moments f are given

by

and f, =(n), f,=(n(n —1)) —(n)', etc. Using Eq.
(10), we then find

Q(~)=Z.(sg)"f(& s)s' s"' '
—+(sg)s2Qs($) 2cs(8g)

f.=d lnq(s)/dz ~. ,
=g (d"/dg") [—2as(g) lns+ lnK(g)].

(15)

We further learn, however, that

c~ = —2g d les(g)/dg

Expanding o.s(g) around a point g, we find

(18)

&s(g ) o's(g)

" (g'-g)" d"~ (g')
mm1 PE e dg Im

If we now choose g as the "g value of the real
world" and apply the expansion to the point g'= 0,
we obtain [using Eqs. (5) and (18)]

1 " c1= as(g) ——Q (-1)
2m=1 m f

(20)

or

C +4C —C +'''1 1 1
R 2 1 4 212 3

The independent emission case of Chew and
Pignotti' corresponds to f =0, c =0 for m ~ 2,
and it is clearly a special case of our new rela-
tion [compare Eq. (9)].

A detailed comparison of Eq. (21) with experi-
ment requires a careful separation of the dif-
fractive part' and we shall return to it in a future
publication. Here we only remark that the data
indicate that cy~ &1 ——,c„predicting a positive
value for c, (if the following terms are neglected).
Since f, increases with energy, c, is probably
indeed positive, in agreement with our prediction.

Another model which is consistent with our ap-
proach is the version of the parton model pro-
posed by Kogut and Susskind. " Their version is
similar to the Chew-Pignotti scheme, and it
leads to Eq. (9).

It is, of course, possible to invent more corn-

Our first conclusion is the interesting result that
all the moments f„(including (n)) behave like'

f =c lns+d„.

plicated and more sophisticated models within

the framework of our approach. A particularly
interesting challenge would be to construct an
explicit dual-resonance model in which the rela-
tive strength of the n-point and (n —1)-point am-
plitudes is related to the intercept of the leading
input trajectory. In this connection it is inter-
esting to note that the Virasoro model collapses
in the g-0 limit into a massless Yang-Mills
theory. " In that model, however, nz=1 for all
g, while we are looking for a model in which n„
-1 for g-0, but +~&1 for g40.

None of the points discussed above shed any
light on the nature (rather than the location) of
the Pomeranchuk singularity. We must add, how-
ever, that nowhere had we assumed that the
Pomeranchukon is a pole. Any complicated sin-
gularity would suit us, as long as its leading
term corresponds to np(0) =1.

We finally summarize our main points again:
We suggest that np(0) = 1 is a fundamental rela-
tion in hadron dynamics, rather than an "acci-
dent, " as it appears to be in scalar ladder theor-
ies. We propose that the "zero-strength limit"
of a future correct theory of the strong interac-
tions is a vector field theory. In such a case, it
is very plausible that, for all g, ap(0) ~ 1. Since
the Froissart bound tells us that for all g, np(0)
& 1, we necessarily conclude that a~(0)=1, re-
gardless of the value of g and regardless of the
specific nature of the singularity. Specific mod-
els based on this philosophy may lead to rela-
tions among measurable quantities. One such
model yields the interesting relation of Etl. (21),
which is, at present, in qualitative agreement
with experiment. A conclusive test of our ideas
mill emerge, however, only when a correct the-
ory of the strong interactions is finally achieved.

The author would like to thank Adam Schwim-
mer for many helpful discussions.

'See, e.g. , G. Giacomelli, Rapporteur's talk, in
Proceedings of the Sixteenth International Conference
on High Energy Physics, National Accelerator Labor-
atory, Batavia, Illinois, 1972 (to be published).

'D. B. Smith et al. , Phys. Rev. Lett. 28, 1064 {1968).
3F. T. Dao etal. , to be published.
An approximate description of the various o„values

can be given in terms of a two-component description
involving a diffractive component and a multiperipher-
al-type, nondiffractive component. Such a description
has been discussed by, among others, K. G. Wilson,
Cornell University Report No. CLNS-181 (to be pub-
lished); J. Ellis, J. Finkelstein, and B, D. Peccei,
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SLAC Report No. SLAC-PUB-1020 (unpublished), and
to be published; A. Biaias, K. Fialkowski, and K. Zal-
ewski, Krakow Report No. TPJU-5/72 (to be published).

D. Amati, S. Fubini, and A. Stanghellini, Nuovo
Cimento 26, 896 (1962).

Recent discussions of multiparticle production via
interactions can be found in D. K. Campbell and

S, J. Chang, Phys. Rev. D 4, 1151 (1971); T. D. Lee,
to be published; and many other papers.

7In this sense we take the opposing view to the notion
that &p(0) =1 is related to a "maximal strength" of the
strong interaction. In fact, quantum electrodynamics

is an obvious example of a "weak" theory which, nev-
ertheless, yields a constant total cross section. We

suspect that the constancy of Otpt in hadron physics has
nothing to do with a "maximal strength. "

G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112
(1968).

See, e.g. , A. H. Mueller, Phys. Rev. D 4, 150 (1971).
~ L. Caneschi [Nucl. Phys. B35, 406 (1971)] has pro-

posed, in a different context, an expansion around the
"g value of the real world. "
"J.B. Kogut and L. Susskind, to be published.

A. Neveu and J. Scherk, Nuc]. . Phys. B36, 155 (1972).

O(4) Treatment of the Electromagnetic-Weak Synthesis*

A. Pais
Rockefeller University, ¹geYork, ¹geYork 10021
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A gauge theory is outlined in which the existence of the Cabibbo angle 0, leptonic CP-
invariance violation, and p-e nonuniversality are linked, To O(G), the sole source of
nonleptonic decays is a neutral current. There is no conflict with present neutrino data.
This CP-invariance violation induces only superweak effects in E decays. A strategy for
finding 0 is indicated.

Imagine a semileptonic interaction of the form~

ig, (tPX+ pe+ v„v) W'+ig(6'X+a(e'"v, e+e'sv& p)j W'

+H.c. W" are charged vector bosons with mas-
sesM, IM2; 6', 4, and A. are quarks. The real
number g and the phases y and P are observable.
To leading order, pe universality is valid in%
-g and in A. -g P decays. The condition that the
absolute values of the amplitudes for p,- e, X-6',
A. -6' are in the ratios' 1:coso: sino implies
(1 —a')tane=2acos(( —y). If P=y, ac 1, pe uni-
versality is strict. If (4 y, it is violated together
with CP. To O(g, ';gns), CP and T are conserved
as is seen by redefining phases; but not, in gener-
al, in higher order. In this note, these ideas are
examineds in the context of a CPT-invariant O(4)-
gauge theory, with the choice a = 1, y = 0, g = m/2.

While then CP-invariance violation is maximal

!
for the muonic terms in the AQ = + 1 currents, the

physical effects thereof will turn out to be minus-
cule for q /M «I.

Six gauge fields, A„', C„', i=1, 2, 3, appear in
the gauge-invariant derivative D&= &&

—i(g~X& ~ t
+g2C„p). Here [t, pj=0; tx t=i t; pxp =ip. The
charge operator is eQ; Q = ts+ ps. For now, we
bypass the option g~/gme1 and put

g =g = eu2.

Then there is a further invariance under reflec-
tions R:t —p in O(4). Consider a scalar field
quartet H with charges (+,0,0,-). Here the action
of t, p is 2t=7(31; 2p=1v'. 1, r are Pauli mat-
rices. I et H have vacuum expectation values
(O,a,a', 0), a,a'real Denote s.uch an H as H(a, a').
Introduce two such H's: H(a, a') and H(0, b); a,a',
510. The H's generate vector masses and D„
becomes

D„=S& ieQA& ie(t,-—P-)Z&sie 2 "(-W. &'(t, —P+)+H. c.j, (2)

A„&2=A„s+C„', Z„vY=A„s —C„',

2W '= [A' +C' —i(A'+C')] P -=M '/(M '+M ') = 1 (4)
P

where Mo is the mass of the neutral heavy Z-vector meson. W,
' and A are even under 8 and are asso-

ciated with a subalgebra O(3); W,' and Z are R odd.
All' fz, are grouped in quartets (-,',—,'). The electron (muon) quartet will be denoted by E~ (M~). For

baryons, two quartets Q~', Q~ of quarks will be introduced. If we assume ru group extension(see the

iV12


