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The measured value is 8=+ 0.3X10, nearly 1
order of magnitude smaller than for the compen-
sated sample. The effect has changed sign, indi-
cating a skew scattering (), = (1.6+ 0.5) X 10 4 which
is nearly twice the calculated value 0, =0.86
X10 '. In view of the experimental uncertainties,
particularly because of the macroscopic inhomo-
geneities of the sample, the result can be con-
sidered as very satisfactory.

In conclusion, the measurement of the anoma-
lous Hall effect in indium antimonide has pro-
vided an unambiguous and quantitative verifica-
tion of the theory. The existence of the two phys-
ical mechanisms responsible for the effect, the
skew scattering and the transverse displacement,
is illustrated by the variation of the magnitude
and sign of the Hall effect from a compensated to
a noncompensated sample.

We wish to thank Professor P. Nozieres and
Mrs. C. Lewiner for extremely valuable discus-
sions concerning many aspects of the anomalous
Hall effect.
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We show that steady translation of a magnetic bubble possessing Bloch lines requires
the application of both longitudinal and transverse field gradients. The predicted lon-
gitudinal gradient obeys the usual relation valid for a normal bubble. The transverse
gradient is proportional to the product of velocity and number of Bloch lines. Experi-
ments of Tabor et al. support the theory.

Instances of magnetic-bubble motion in a di-
rection different from that of the applied field
gradient have been reported recently. ' The ex-
periment of Tabor et al. ' shows that such skewed
motion is a general property of "hard" magnet-

ic bubbles, which are known to contain vertical
Bloch lines. "' Vella-Coleiro, Rosencwaig, and
Tabor' proposed a nonlinear theory of both lon-
gitudinal and transverse components of mobility
to explain this effect. Although it is consistent
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tan(8/2) = exp[(f —q)/4],

(z/z)' (2)

where $ is a local Cartesian coordinate normal
to the wall, and q marks the center of the wall.
The direction of tilt constitutes the Bloch-line
structure, described further on.

Turning to the dynamical problem, we assume
that in first-order approximation the static pat-
tern M(x, y) translates without distortion whatso-

with experiment, their theory cannot be consid-
ered complete because it employs a drive-field-
dependent function f determined only from the
dynamic data to be explained.

In the present Letter, we propose a linear mod-
el of skewed bubble motion, and suggest that the
apparent nonlinearity of the experimental data'
is primarily a consequence of coercivity, which
tends to obscure the basic linearity of the under-
lying phenomenon. Our results enjoy some sup-
port from the data.

Let us consider first a static cylindrical do-
main with radius r in a uniaxial magnetic film,
as illustrated in Fig. 1. The cylinder axis, which
is parallel to the magnetically easy ~ axis, lies
normal to the xy plane of the film. The equilib-
rium distribution of the magnetization vector
M(x, p) is determined by a balance of torques
due to exchange, anisotropy, demagnetizing field,
and a uniform applied bias field H„. Within the
cylinder, M lies nearly parallel to &, while out-
side, nearly antiparallel to s. Only within the
interior of the domain-wall region of thickness
&, assumed small compared to r, does it tilt
much away from the z axis. In any wall region
small compared to r, the amount of tilt of M

measured by the spherical polar angle 8 has the
Bloch-wall form'

B8/at = (a8/aq)(aq/Bt) = —a '(aq/Bt) sin8. (4)

Substituting Eq. (4) in (3) we have

Bp/Bt =yHg —nb, ~aq/Bt, (5)

a special case of one of the general equations of
wall motion. '

Let us now assume a uniform domain velocity
V ()0) in the x direction. If the plane polar an-
gle P describes the position of P on the cylinder
wall (see Fig. 1), then the local wall velocity
normal to the wall is

Bq/at = V cosP.

Given a static Bloch-line structure g(P) in the
reference frame of the moving domain, the mo-
tion of P in the laboratory frame is

ever, and we calculate the applied-field distri-
bution H, (x, y)+H„required to produce the as-
sumed motion. Let g(t) be the azimuthal angle,
measured from the plane tangent to the wall, of
M at any point P (fixed in the laboratory) which

happens to lie on the moving wall at the time t.
The motion of g in the laboratory frame is gov-
erned by one component of the Landau-Lifshitz
equation

dP/dt = yH, + (e/sin8) B8/Bt,

where y is the gyromagnetic ratio and yH, rep-
resents the Larmor precession due to H, . The
last term in this equation represents the damp-
ing in Gilbert's form with coefficient e.' The
omitted terms due to exchange, anisotropy, de-
magnetization, and H, & cancel, according to our
assumption of motion without distortion. More-
over, the function (1) is unchanged, though now

q depends on t because we consider $ to be de-
fined in the laboratory frame. Thus, with the
help of Eq. (1) we have

VHz Bg/Bt = (dg/dP)Vr ' sinP.

Mx, y

V

Let us consider the limit of high Bloch-line
density. Then for small V, P(P) tends to the stat-
ic constant-twist expression (nP/2)+ const, ~'
where n is the even number (positive or negative)
of Bloch lines. In this limit, substitution of Eqs.
(6) and (7) in (5) gives

FIG. 1. Illustration of a hard bubble. The small
arrows indicate the wound-up character of the mag-
netic moment distribution in the domain wall when the
number of Bloch lines is large.

yH, = (nV/2r) sinP+ nVA ' cosP (8)

Comparing this equation with the field distribu-
tionH, (x, y) in the presence of a uniform gradi-
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is (10), which may be expressed in the form

BH, /ex = (a V/y~r)+ C,

BH,/sy = nV/2yr'. (10)

Here the ad itoc constant C (& 0) has been added
without proof to represent dynamic coercivity,
an effect present in all specimens but not well
understood. %6 mention in passing that Ref. 1

assumed the coercive force to be parallel to the
app/fed gradient, in the course of data reduction.
It seems to us more natural to take it parallel
to the velocity, as above.

As stated by Rosencwaig, Tabor, and Nelson,
the presence of Bloch lines tends to decrease
the Bloch-wall thickness. For sufficiently large
Bloch-line density, the exchange energy density
term A(Vt/r)'sin'8 provides the dominant influ-
ence. Since 1Vgl has the constant value I nl /2r,
this term is equivalent to a uniaxial anisotropy
contribution A(n/2r)' sin'8. Replacing K by K
+&(n/2r)' in Eq. (2), we find the more general
relation

~ = [(Z/W)+ {n/2r)2]-"2,

which is a special case of Eq. (9) of Ref. 4, ex-
cept for a numerical factor. (Our n is defined
as twice theirs. )

Experimental results for a garnet of compo-
sltloQ YGdTmGRO SF64 20~2 %'ere expressed lQ

terms of the velocity components parallel (VI)
and. perpendicular (V~) to the applied field gra-
dient. ' However, the corresponding expressions
V~~(lVH, l), V~(IVH, () derived by inverting Eqs.
(9) and (10) are cumbersome. It is simpler to
compare two other relations. The first relRtlon

2V'/yd V, =H, /n, (12)

where H (=dlVH I) ls tile applied field difference
across the bubble diameter d. It differs from
bR of Refs. 1 and 5 by a threshold value of H&

=0.87, 0.72, 0.72 Oe for the three bubbles with
d =6.2, 3.9, 3.3 p,m, respectively. 9 The left-hand
quantity in Eq. (12) is plotted versus H, in Fig. 2,
using the dRtR of Ref. 1 RIld the vRlue +=1.76~10'
sec ' Oe '. The two larger bubbles obey Eq. (12)
quite well, assuming they have different values
of N. From the slopes of the fitted lines we find
n =250 and 190 for the 6.2- and 3.9-pm bubbles,
respectively, "which compares favorably with
an estimate n =100 based on bubble statics. 4'

The second relation measures the dependence
of di.rection on V. Assuming the limit of set'y
high Bloch-line density, we neglect K in the
thickness formula (11). Then we substitute the
result in Eq. (9) and divide the latter by Eq. (10)
to find

V„BH,/5x H, yd '

v, ~H, /~y 'In~ 2v,

where II,= Cd is the dynamic-coercive-field dif-
ference across the diameter, and the sign is that
of n. Experimental values of V„/V~ versus yd/
2V are shown in Fig. 3. The plotted points par-
tially support the linear relation predicted by Eq.
(13). Also the difference between n for the larg-
er bubbles is qualitatively reflected in the fact
that points for d =3.9 pm lie above the line fitted
to the points for d = 6.2 pm. Considering all of
the data in Fig. 3, the value of e given by the
vertical intercept may lie in the range 0 to 0.15.
The independent estimate e =0.2 for this garnet'
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FIG. 2. Test of the drive dependence of velocity
predicted by Eq, (12), using data of Bef, 1 for bubbles
of three diameters.
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FIG, 3. Test of the velocity dependence of direction
predicted by Eq, (13), using data of Ref. 1.
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falls outside of our range. However, a more
satisfactory estimate n =0.07 follows by linear
interpolation of the quantity X/y'= nM/y, where
A, is Landau-Lifshitz damping, from a table of
ferromagnetic resonance values for pure gar-
nets. " Taking n =250, as determined above, the
slope of the line for d = 6.2 pm provides the value
0,= 0.6 Oe comparable to the static H, = 0.87 Oe.
The poorer agreement in Fig. 3 compared with

Fig, 2 may reflect inaccuracy in our representa-
tion of coercivity, which plays no role in Fig. 2.

Some qualitative differences between the pres-
ent theory and that of Ref. 5 are apparent. Their
expression for V~/V~~ [see their Eq. (15)] de-
pends on drive only through the functionf, which
they determine from the experimental velocity
data by inverting this expression. The function

f measures the drive-dependent redistribution
of the Bloch lines, according to their Eq. (10),
which in our notation is equivalent to

g =np/2+ const+ a cos(p —p, ). (14)

where the V-dependent parameter a is propor-
tional to f. Thus, they clearly attribute the non-
linearity represented by the drive dependence of
V~/Vg (Fig. 3) to this redistribution. Although
we acknowledge the general existence of the re-
distribution, we consider its invocation unnec-
essary because the coercivity H, leads to V (or
drive) dependence of V~/V, ~, according to Eq.
(13). Moreover, one can easily show that the
last term in Eq. (14), when substituted into our
relations above, contributes nothing to VII, but
only to higher terms in the Taylor-series expan-
sion of H, (x, y) which would tend to distort the
domain. In short, we assert the adequacy of the
static Bloch-line distribution to explain the data,
and also refute the idea that redistribution great-
ly affects mobility in general. Particularly, our
linear model accounts naturally for the linearity
displayed in Fig. 2, which cannot be simply ex-
plained with the inherently nonlinear theory of
Ref. 5.

The expression of Ref. 5 for V„/V~ is made
equivalent to our Eq. (13), for the case H, = 0
and &=d/Inl, by assigning tof the constant val-
ue (I —&2n')/(I + W2). In this case, the two the-
ories are approximately equivalent in the limit
of small n, Ref. 5 differing from Eq. (10) by the
factor 2 '. In more general circumstances the
predictions of the theories disagree.

It is interesting to notice that the longitudinal
mobility of the hard bubble, described by Eq. (9),
has the standard form valid for a normal domain

without Bloch lines, granted the correction (ll)
for Bloch-wall thickness. " Thus it does not suf-
fer the enormous reduction (factor o.') effected
by Bloch lines in bubble-collapse experiments. "
(This statement presupposes the application of
an appropriate transverse "bias" gradient, which
does r~o work, to maintain V 'parallel to the "driv-
ing" gradient. ) The difference arises from the
fact that a pure gradient drive pushes the Bloch
lines in both senses around the perimeter so that
the net force vanishes. Since the Bloch lines
thereby assume. static positions, the elementary
concepts of domain wall dissipation are still val-
id. However, a uniform drive field pushes the
Bloch lines in one sense only, causing a contin-
ual circulation which diminishes the radial mo-
bility. "
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