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In the transition region of diffusion where colli-
sional and convective diffusions are comparable,
the total diffusion will be the sum of two different
types of diffusions. Thus, we have

D„,=(a"'/7„)+-', ((u~/&u, )(co~/nA, D),

which agrees well with the simulation results a,s
shown in Fig. 1(a). Tile break points from classi-
cal to convective diffusion are also predicted cor-
rectly. They are given by

(d&/(d~=(d&T„/BpRA. D Q.

I'"inally, we should like to point out that the con-
vective diffusion IQRy Rlso explRln IQeasurements
of Moore and Kessler' on the magnetic moment
of R germanium plasma diffusing Rcross R mag-
netic field. They found that for (d,7'„s 3 the mea-
sured magnetic moment agrees well with the the-
ory based on the ambipolar diffusion which gives

D, =v, 'T„/(l+(u, 'g „').
However, for co,v &3, the observation deviates
from Eg. (8), which predicts M 1/8, -and is
more or less independent of B.

As we have already pointed out, the convective
plasma transport is more important than the col-
lisional transport for cu,/r„&3 and D should vary
as l/8 there, which would explain the observed
fact that the magnetic moment is independent of B.

In closing, it would be interesting to observe

the three different regions of plasma diffusion' '
for a finite-length solid-state plasma. This may
be possible if nA. D' is larger than, say, 100 and
the electron lattice collision rate is small enough.
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The equation of motion of a particle in a dielectric
may be written as

"q'q i(~i r')
Idt gg] & rg —r~ c

where e is the dielectric constant of the medium.
Therefore, the plasma frequency and the Debye length
in a dielectric will be ~& —=(4wsq2/em) ~2 and An
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The dynamical behavior of the normal fluid phase of liquid He -He mixtures near the
tricritical point is studied. The superQuid order parameter and the entropy Quctuation
»e shown to have a common charaeteristie frequency which is the same as that predicted
by dynamical scaling for the characteristic frequency of second sound in the ordered
phase. The concentration fluctuation is shown to have a smaller characteristic frequen-
cy. The critical anomalies of the transport coefficients also are determined.

The unusual thermodynamic properties manifest near tricritical points have recently been the sub-
ject of several experimental and theoretical investigations. ' Here we report on the first theoretica. l
study of the dynamical behavior near tricritical points, concerning ourselves in particular with the liq-
uid He'-He' mixtures in the normal fluid phase. We adopt the notation recently proposed by Griffihl



fox the critical exponents and the scaling fields g and A.. Here it is useful to introduce the straight line
through the tricri. tieal point which lies tangent to the line of critical points and the first-order line in
the g T-plane (where a denotes the chemical potential difference p, —p, ). Then the X axis may be cho-
sen to lie parallel to this critical line (say A. = T —T,) and the g axis may be chosen so as to cut this
critical line [say g= a- a, (T), where s,(T) defines the straight line]."We choose the set of gross dy-
namical variables (g&] to be Fourier components of those local fluctuations which exhibit diffusive or
relaxational behavior in the normal fluid phase, namely the superfluid order parameter (, gt, the en-
tropy density fluctuation 68, the local concentration fluctuation 6x, and the local transverse velocity
u.4 The variable 5$ is chosen in such a way that its average square fluctuation is proportional to the
specific heat at constant pressuxe and concentxation, C „, which remains finite at the tricxitical
point. "~' For simplicity we ignore memory effects and write the macroscopic law for the gross vari-
ables in the following form (dots stand for time derivatives):

where y,.= & la& I'&, a& is the quantum mechanical operator corresponding to g, , and where I', , = I'„.
contains the transport coefficients [see Eq. (9)]. If one approximates the mode coupling theory to the
lowest order in which only two modes are allowed in intermediate states then I'., is given as

Erg~ y ~ V(jBlPl)V*(ltBN)

where I.
&

are the so-caQed bare Onsager kinetic coefficients which are assumed to be finite at the
critical point' and where only the diagonal elements of the I' s, I' =F, are retained in the denomi-
nator of the second term. ' The quantity V( jmn) is a mode-coupling coefficient given by'

and the brackets denote a commutator. To discuss the tricritical point, we use the parameter scaling
assumption of Riedel and%egner" according to which the order-parameter correlation function

G(k, X, g} takes the foBowing scaling form:

and the correlation function Go(k, g, g) of the nonordering density x is

8ince the X's and V's involve only long-wavelength Fourier components, it is not difficult to obtain the
commutators among the a's and their scaling behavior. ' For example, V(8$$t} can be shown to scale
as g'"ti'(A ~/g)'~"& "&+. In this way one can determine the scaling behavior of I',.„where in the cases
in which the second term of Eq. (2) dominates the first term one must solve the equations in a self-
consistent mannex. The results can be expressed in the following scaling fox'ms: In the trieritical re-
gion,

I'. (k) =go~f3(k/g"~, A ~/g) g~+sE~(k/g ~, A. +/g).

Near the A. line,

I'gg(u) =g 'A. ~~ if2(k/g"A~~"~ "&) g+~ A. 2~ ~3 ~2 E (u/g"A ~~"~ "&},

where k is the wave number of the macroscopic mode and where the first and second terms of (7) and

(8) correspond, respectively, to those of Eq. (2). The scaling function f, reduces to a function of
P/g"& for g "/g-O, and tends to (X"/g)'~ '2f2(k/g"X ~'"~ "~) in the limit as X ~/g approaches infinity. The
same remarks apply to E, and &,. The critical exponents o,. and f, (where i=.2, 3) for the five elements
of I" which appear in the present problem are tabulated in Table I. The critical exponents y„p„...
are the tricritical exponents y„p„.-, and the critical exponents y„p„.. . are the ~-line critical ex-
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n; y; 2v; 2v&+n; 2v&+n;/2
3v;/2 3v;/2 3v;/2+n; 3v;/2+n;/2

I', (k) = ~,k'/(pC, ), I'„(k)=Dk', I'„,(k) = I', „(k)= [(8&/sx) /TC „]' 'L k',

where D, I.~, and x, are the diffusion constant, the thermal diffusion coefficient and the thermal con-
ductivity (measured in the absence of a concentration gradient), respectively, and where p and 4 are
the mass density and the chemical potential difference, respectively. Comparison of Eq. (9) with Eqs.
(7) and (8) and Table I immediately yields for the transport coefficients in the tricritical region

ponents y; v, . . . . Th@ mode-coupling contribution TA+Lz &. The critiea]. exponents 0; an
to F„was found to be negligible and thus was for the matrix elements I' „,where I' ~~I' . The
omitted. Hence the shear viscosity always re- subscripts i=2, 3 denote the ~ line and tricritical expo-
mains finite. On the other hand, the mode-cou- &e&ts~ ~esPet-tive&y

pling contributions in which two order-parameter
modes (g and gt) are excited in intermediate r r„ XS IX XS g

states dominate in all the other I"'s if one as-
2v~

sumes the accepted values n =0, v = ~2, y = &4 and
that y&

= 1, p& = a, = ~, y = 2, as has been suggest-
ed recently. ' '

In the superfluid phase the second sound velocity u, is proportional to p,'" (where p, is the super-
fluid density), since C~ „remains finite at the tricritical point. Since p, scales as the inverse of
the correlation (coherence) length (,"the characteristic frequency associated with the second sound
propagation, &c, = ku„scales as &u,

—] ' ' -g'"&' (A ~/g}"' "&~~' provided the critical exponents are the
same as those in the normal phase. Hence dynamical scaling" holds for the second sound propagation,
the order-parameter relaxation, and the entropy diffusion.

The results obtained above also allow us to predict the critical anomalies of all the transport coeffi-
cients of the normal fluid phase by noting that in the hydrodynamic regime the I"'s are simply related
to the transport coefficients:

x -I.,-g "~~'k(~&/g}, D -g "~ v~~'k(~&/g),

and near the A. line

z -I. -g "" D-gS T

(10)

x = x,- (pr. „'/TD)(3~/Bx), ,
Now an explicit calculation shows that the two mode-coupling coefficients V(S(gt) and V(xggt) which
enter in the dominant contributions to a„L,r, and D are simply related for k$ «1 by

(12)

The function k in general differs for different transport coefficients but behaves like h(x} -x~v v~&~' for
x»1. We note that the concentration conductivity a = pD(ba/Bx}-» ' behaves in the same way as x,
and I.~. We also note that a thermal conductivity is normally measured with a heat current but no dif-
fusion current, such that the resulting thermal conductivity ~ is given by'4

V(Sk g k.tjrT k ) Ts4

V(xk g k, |tp q, ) xC (&a/Bx) (13)

where s4 is the partial molar entropy of He' per unit mass. Since this ratio is independent of k'one
can show that these dominant mode-coupling contributions cancel in Eq. (12). As there is no other
mode-coupling process which leads to a divergence in v, in the present approximation, we are led to
predict that whereas z, will diverge, z will remain finite near the tricritical point and the ~ line, a
prediction which is in agreement with Ahlers's experimental measurements of ~ near the A line. " In
particular the approach described here can be readily extended to the superfluid phase as well as to
other tricritic31 systems like magnets. We plan to investigate these problems including applications
to critical scattering experiments.
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A numerical technique is used to solve equations which describe growth of a barium
cloud in the ionosphere, including arbitrary end-shorting ratio A, . For A, corresponding
to actual releases, one finds growth of a limited range of wavelengths h grouped around

a maximum growing k. The growth rate and & range are sensitive functions of electric
field F. and A, . Stability occurs below a critical E and for strong shorting. The growing

modes are localized on the rear of the cloud. All modes are unstable for no shorting.

One of the most striking phenomena exhibited

by artificial plasma clouds released in the iono-

sphere is the onset of well-defined magnetic-
field-aligned striations. These appear at some
time after the initial release, the delay varying
from experiment to experiment, but in the neigh-

borhood of tens of minutes. There seems to be
fairly general agreement that the E x B instabil-
ity' (sometimes called the gradient drift instabil-

ity) is responsible for the onset of these iono-

spheric striations. The problem has been to dem-
onstrate that this is actually so by calculating de-

lay times and scale sizes and comparing with ex-

periment. Previous attempts to calculate this
have failed for reasons which are now quite clear.
One approach has been to ignore the end shorting
entirely and treat the instability in a slab model. '
(End shorting here means electron and ion cur-
rents in the surrounding ionosphere across mag-
netic lines passing through the cloud. ) The re-
sult is a prediction of instability at all times and
at all wavelengths. This is just what one would

expect if the entire stabilizing effect of end short-
ing is removed. tIndeed the result is already
there in Ref. 1 if one takes the same limit as in
Ref. 2, namely (QT) -~, where 0 is the gyro-


