
VOX, UMX 29, NUMSSR 24 P H Y S l C A I. R E V I E %' I.K T Y E R S 11 DKCZMSZR 1972

the 8-wave two-nucleon forces, it is now very
clear that accurate and extensive polarization
data have provided the tests that prove the ne-
cessity for the inclusion of higher partial waves
in the calculations.
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Mathematical formalisms for the separation and solution of the tensor perturbation
equations in an empty, diagonal, type-IX space is developed, based upon group-symme-
try properties of homogeneous spaces. Numerical results in sampling solutions of the
"mixmaster universe" show damping amplitudes of perturbations as the universe ex-
pands, a behavior in qualitative accordance with earlier results on the Friedmann uni-
verse.

In an attempt towards the construction of the
general cosmological solution to the Einstein
equation, Lifshitz and Khalatnikov have shown
that near the singularity, solutions containing
matter manifest no features not already found
in the vacuum solutions. " Later they discov-
ered that the asymptotic behavior of the metric
near the singularity is at each point of the sin-

gular hypersurface described by a mixmaster-
type behavior. This dlscovely has put the mlx-
master universes+ ' among the most viable mod-
els for studying the general cosmological solu-
tion. To probe deeper into the earlier states of
the universe near the singularity, it is important
to understand the behavior of perturbations in
the mlxmaster universe: Given an anisotroplc
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metric with small inhomogeneities, how would

they behave as the universe evolves'P Will in-
homogeneous perturbations damp away and the
Khalatnikov-Lifshitz generic case be restored,
or will they grow to such an extent as to disrupt
the stability of the universe& And if so, how'P

It was towards an understanding of these prob-
lems that the present work was first motivated.

We have studied tensor perturbations to an

empty, diagonal, mixmaster universe. 4 In this
Letter we shall work out a mathematical formal-
ism for the separation and solution of the per-
turbation equations. Unlike earlier studies on
the perturbation problem, such as the Schwarz-
schild metric' or the Friedmann universe, ' in
which complete sets of basis tensor harmonics
have to be constructed explicitly for the expan-
sion of tensor perturbations, the method present-
ed here makes use of purely group-symmetry
properties of homogeneous spaces' and is readily
generalized to other types of homogeneous cos-
mologies. The method presented here has two
particular features:

(1) Since every point in a homogeneous space
is equivalent to any other point by a group oper-
ation, then instead of trying to construct basis
tensor harmonics (such as the tensor spherical
and hyperspherical harmonics for the Schwarzs-
child and Friedmann solutions, respectively) as
functions of the whole space, we can choose to
evaluate the perturbation equations at one arbi-
trary point of space and regenerate the complete
solutions by means of group translations on the
manifold. In the present exposition we use for
the invariant basis a coordinate representation
in Euclidean four-dimensional space with re-
strictions on the three-sphere. Here, a conve-
nient point of choice that will reduce the problem
to maximum simplicity is, without doubt, the
pole (where x, =x, =x, =0, x, =l; x& are the co-
ordinates in E ).

(2) If we choose to evaluate the equations at the
pole, since for our purpose here we need only
make use of the second derivatives of the metric
tensor (from which the curvature tensors are
readily computable), the expansion of the metric
tensor components in powers of x& can be termi-
nated at the second order. This is most easy to
carry out and simplifies the problem consider-
ably. The coefficients of expansion of the linear
term give the Christoffel symbols, that of the
quadratic term gives components of the curva-
ture tensor. '

We outline briefly our approach in the following.
The metric of a homogeneous cosmology is in

general given by

ds~ = —dt2+y, «(t)o'v (a, b =1, 2, 3),

where the 0' are the invariant differential forms
of the space. (Throughout this paper, summa-
tions are extended over repeated indices, unless
otherwise stated. ) They obey the exterior differ-
ential relations do'= 2C„'a'h o', where 0„' is
the structure constants of the underlying sym-
metry group and the caret denotes the "wedge"
product. For the mixmaster space, which be-
longs to the Bianchi type-IX classification, the
group is SO(3) and the C„' is equal to e,»„ the
antisymmetric tensor. Expressed in terms of
the coordinate differentials dx' of the four-di-
mensional Euclidean space E4, the invariant ba-
sis forms o' on the three-sphere 9' are given by'

G = 2(- x~dx~ —x«dx2+x2dx«+x~ dx4),

a' = 2(x, dx, -x,dx, -x,dx, +x, dx, ),
0' = 2(-x,dx, +x, dx, —x,dx, +x, dx, ),

(T = 2(x~ dx~+x2dxg+xodxs+x4dx~).

Introducing the transformation matrices S,&( )x
defined by a'=2S„(x)dx', the spatial metric can
be written as

dl =y «(t)S;(x)S» (x)dx'dx'=g; (x, t)dx'dx, (2)

where nowg;, .(x, t) =y„(t)S„(x)S»(x)and y„=4y„. The diagonal mixmaster metric takes the form
y„(t) =l,'(t)5„, where l, (a =1,2, 3) are the three principal axes of the universe.

For subsequent calculations, we need explicit expressions for the metric tensor g;;(x, t). Doing this
straightforwardly would involve lengthy algebraic manipulations. However, the calculation can be
greatly simplified if we take note of the above-stated properties of a homogeneous space. That is, we
can evaluate all geometric field quantities at any arbitrary point in space; and at the pole it suffices
to retain up to the quadratic terms in x; in the series expansion of g;,.(x, t) Hence, from .(1) and (2),
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writing

3 3
x,'= I —P x,', dx, = —Q x; dx;,

also setting x~= 1, we deduce the following algebraic relation for the general type-IX metric in 8 co-
ordinates on the three-sphere:

g„(x,t) =y„(t)+. e„,y„xg+sk„y„x, +. (y „)x,x, +2y„e„, e„„x„x„+[(y„x„x„)—(y „)(x„x„)j(),,
From this expansion, the Christoffel symbols and their derivatives at the pole are readily computed.
All the nonzero components are given as follows {no summation over repeated indices):

I'oy =~l~li I';k =~;gk(yk y9-)/y», ()I','»xk=el;k(~~/y I(i/y-~)
0

1 for i = j =k =I,
()I"o,'/exk=&;k(& -&,) Sl";*/»i = (»-y;)(y&+y; -yk)/»y; f» t = i&& =l (P& t&&),

~~ (y&+2y& —2')/y& for j=kei =l,

(4)

where y, -=l, x;-=f,/l;.
Perturbations to a spatially homogeneous metric can, in general, be expressed in terms of the ba-

sis-i.nvariant forms of the space with the time-dependent expansion coefficients coupling to the repre-
sentation functions of the particular underlying symmetry group of the space. For type-IX spaces,
the representation functions are the well-known signer D functions Dk„(g). The general perturba-
tion h&& "(x,t) belonging to definite angular-momentum states (Z, M) can be written as

""(x,t) = Q. h„x(t)o(;)'v(, )'Dk„'(g) =Qh„x(x, t)Dx„{g),
E=-g EC

where g is a group element of 80(S) and lI,„(x,t) =4k„{t)8„{x)S»{x).The time-dependent amplitude
functions h„(t) are governed by a set of coupled differential equations, to be derived from the per-
turbation equations below. For each definite value of J, there exist 2J+1 components of lk;~ (x, t)
coupled to the signer functions in the intrinsic magnetic quantum number K. No such coupling exists
for spaces of higher symmetry, such as the Taub or the Friedmann universe. The diagonal mixmaster
metric possesses a further symmetry under the four-group {invariance under rotation through 7) about

any of the principal curvature axes), and the eigenfunctions are the symmetrized symmetric-top wave

functions. Detailed expositions on the solutions of scalar wave equations and the symmetry classifica-
tions of the wave functions in the mixmaster universe have been given by Hu. "

Now with the Christoffel symbols and their derivatives given by (4), we can proceed to simplify the
perturbation equations for the mixmaster universe by evaluating them at the pole (x, =xm=xs =0). The
perturbation equations on an empty background metric {see, e.g. , Ref. 6)

2~&jr-&p.,~ -&pnv &~p +~ ~pu

are first expressed in terms of ordinary derivatives. (Here Greek indices range from 0 to 3, Latin
indices from 1 to 3, and semicolons denote covariant derivatives with respect to the four-dimensional
background metric. ) For the perturbation tensor components lk», we can avail ourselves of the free-
dom i.n the choice of gauge to impose the synchronous conditions boo=ho' =0 In simplifying the per-
turbation equations we shall need the first and second derivatives of l),;, (x, t) and Dz„(g). This can
be done with relative ease if we make use of the group-symmetry properties of the space. The first
derivative of h;,. can be related to h;, themselves by means of the Killing conditions. Alternatively,
the spatial derivatives of h;,. evaluated at the pole can be obtained by making an expansion of 8&&

=h„"(t)o o' in powers of x; in exactly the same way as was done for the metric tensor. In fact, we

can read off the relations from (3), with h;~ replacing y„. The spatial derivatives of the D functions
can best be understood from the action of the invariant operators 8, (dual to the basis forms o') which

are simply related to the intrinsic angular-momentum operators L, by L; =te, (i = I, 2, 3), where the

L; satisfy the commutation relations [L„L,]= -iI, (cyclic). From (l) it is easy to see that ()/&x,.
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=2S„.e, . At the pole, 8„.= —6,&
and hence

8/8x, I, = —2e, =2si;. (7a)

Repeated operations of I
&

yield the following relations for the second spatial derivatives of DE„at
the pole:

82 82 82
= —4I,,s, = = —2(i, i;+i, i, ) (i,j=1,2, 3).

8X» 0 8X» X~ o 8X~8X» o
(7b)

The operations of the angular-momentum operators on the representation functions are well known.
Define the ladder operators L, =I,+iL2. From the elementary relations

A

I+D» =S'&»D»-g I--D» = —S&»+iD».g (8)

where ~»-=[(J+&)(J-K+1')]'I', the action of l.; and l.;i., can easily be derived
After a lengthy but straightforward calculation, we arrive at Eqs. (9) for the time-dependent expan-

sion coefficients ls„(t). The other four equations are obtained from 6R», 5R» by cyclically permuting
the indices 1, 2, 3 on h;, , y&, and 8&, 8&. Here the spatial derivatives 8& are understood to be acting on
the DE functions with the effect of shifting the K indices of the components. The final expressions after
the operation of 8;8, are obtained via (7) and (8). Because of lack of space, we give in (10) only 5R,s
as an example:

~I e 0 K

2M» = -h, ~ + (3»~ —»s —»s)h~~ —4»~sIS, ~
—»~y~h +IS» b, —2Q '" 8,8„+h»8,s

n=l yn

+ 4lss — I8y + 2~ps — + — 8s + 2)Sps — + 18s
rs ri' "

ys ys ysrs ' "
ys rs rsrsj'

+ —2y, ' " I+(y, '+ys'-ys')I " I+(r&'+y, '-y, ')I "
I D, (0)=0,

K

2M„= Fi„+(», +-», —»,)Is„—4»,»p„+ " [y,' —(y, +y, )']
Yl Y2Y3

K

Y3 y3 Y3 Y3

D (0)»
I yy j+ SS yy )+ SS ( yS S»

32'„=Q —
(IS -2» )'s„—2» ls ) =0,

m3:1 ym

25R„= P —t[a '- (», +» ))s .'] 8, —(k, ' —2», I,. )8m]
Nt &» yet

1 1 ' E K g ~ E+2m, ———h +2 ~-~ )'s D (0) —0 (no sum on j 0)'

K K
25R„=-h„+(», +»s —»s)h„—4», », IS„»+ " [ys' —(y, +y, )'] — " Ks

Yl Y2Y3 Y3

&»PS&»+g + S &» gC» + (I!~S + S ASS )6»~~ + ()S~S —SASS )E»'M 2{&+1)»„. »+, 2(& —1)»-g» i
ys Y3

E yi y3 yl I E J~yS yl 3y9 I E y2 y1
O

3
a'=-g a, ,'/y, ,

8
8

8X»

82

0»=l yi X»
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and the dot denotes differentiation with respect
to time t.

The final result consists of a set of six coupled
second-order ordinary differential equations,
5R;, , i,j = 1, 2, 3 (the dynamic equations) and four
first-order ones 5Goo, 5R„(the constraint equa-
tions) for the six unknown functions h„(t) (a, b

=1,2, 3). They are checked to be consistent in
time. For each J value, there are thus 6(2J+1)
dynamic equations and 4(2J'+1) constraint equa-
tions for 6(2J+1) unknowns h„(t). Since the
dynamic equations are second order in time, as
initial conditions, we need to specify h, ~ and h„,
the derivative with respect to time. Thus a total
of 8(2J+1) initial conditions have to be specified;
the other 4(2J+1) are solved from the constraint
equations. Because of the consistency of the
equations, the constraint equations are always
satisf ied.

We have solved the perturbation equations nu-

merically on a computer in the simplest case of
~= 2 for several sampling runs of the mixmaster
solutions. The behavior of the lowest mode is
already sufficient for determining the stability
of the universe. In all cases the perturbation
amplitudes decrease as the volume of the uni-
verse increases (receding from singularity) and

vice versa. The overall characteristic behavior
encompasses the qualitative description of per-
turbations (gravitational waves) in the Friedmann
universe (which is a special case of the mixmas-
ter universe with /; all equal) as given earlier
by Lifshitz and Khalitnikov. ' Their equations
are derivable from the ones given here, only that
the mixmaster does not yield separation of dif-
ferent types of perturbations —scalar, vector,
and tensor, as is possible for the Friedmann

case.
Now that the mathematical formalism is well

laid out, studies on perturbations to a mixmas-
ter universe containing matter and the related
problems of galaxy formation, which constitute
topics of even greater physical interest, can
easily be extended. This, together with the de-
tails of the present work, are to be reported
later elsewhere.

We are indebted to Professor J. A, Wheeler for
suggesting this problem and many helpful discus-
sions. We also thank Professor R. Ruffini for his
keen interest and constant encouragement.
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