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strong action of ultrasound is due to the depen-
dence of viscosity on density or to second-order
viscosity, both of which ax'e totally unknown for
any bqMd crystale Another posslb111ty to gen-
erate vortices, but no straight floe, is Bernard's
instability in a thermal gradient. " The experi-
mental reports" do not refer to this mechanism
which would probably have been easy to recognize
(for instance, by very long response times).

In summary, it seems that the proposed mech-
anism of sound action on nematics is plausible
and may provide a means to explore novel mater-
ial properties. Our high estimate of the thresh-
old is based on fairly unfavorable assumptions.
The use of larger viscosities and thicknesses
than those inserted above would lower the pre-
liminary theoretical value by oxders of magni-
tude.
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Compressive square-wave pulses are launched in a double-plasma device. Their evo-
lution is interpreted according to the Korteweg-de Vries description of Washimi and
Taniuti. Square-wave pulses are an excitation for which an explicit solution of the
Schrodinger equation permits an analytjical prediction of the number and amplitude of
emergent solitons. Borsts of energetic particles (pseudowaves) appear above excitation
voltages greater than an electron thermal energy, and may be mistaken for solitons.

A mathematical description of slightly nonlin-
ear, one-dimensional, ion acoustic waves in a
collisionless plasma vrith cold ions has been giv-
en by %ashimi and Taniuti. ' The resulting equa-
tion for the fractional perturbation of the ambient
ion number density is the Korteweg-de Pries
equation, '

where 6n = 5n(x, t) is the perturbation on the ion

number density, and no is the steady-state con-
stant density of the plasma. x ls the spatial co-
ordinate measured in units of the electron Debye
length A. D and t is the time measured in units of
the inverse ion plasma frequency, v~& '. Equa-
tion (l) is written in a coordinate frame moving
to the right vrith an ion acoustic speed c,=A. D~~, .

Equation (1) has been intensively studied in the
last decade. 4 " In particular, an asymptotic
long-time solution has been given" rvhich applies
to density perturbations 6n(x, 0)/n, which are pos-
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itive (compressive) and of finite spatial extent.
We shall be concerned in this article with the
case where 5n(x, 0)/n, is a finite square wave of
magnitude 5n, /n, .

The prediction for the long-time right-traveling
part of the solution is a superposition of spatially
separated "solitons" of the form [we now express
the results in laboratory (cgs) units, but again in
a coordinate frame which travels to the right with
the ion acoustic speed c,]

5n(x, t)/n, =g&2~,. se ch'q~, (2)

where e,. =(5n, /n, )g, and g, =IE& I/V, . Ez&0 is the
jth negative eigenvalue of the Schrodinger equa-
tion

(3)

where f =(2)'~'x/A. D, with x measured in centime-
ters. V(f) is an attractive square-well potential
of depth V, = [(2)'"/6]5n, /n„and of width a(2)+'",
with a the width of the laboratory pulse in units
of XD,

'

gj = (c~/3)'"(x —,'~qc, t)/AD+ y~,

where c,= (kT,/m &)'" and A. D
= (kT,/4mnoe')'I'. T,

is the electron temperature, m& is the ion mass,
and e is the electronic charge. y,. = ——,

' ln[c,.'(0)/
2 IE, I'"], where c,..(0) is the coefficient of the
exp[- IE, I'I'g] term in t.he f- ~ form of the nor-
malized asymptotic eigenfunction to Eq. (3). c~(0)
can be readily evaluated at the edge of the well
at t=0.

Since the Schrbdinger well is of finite depth,
there will only be a finite number of bound states,
and the sum in Eq. (2) will consist of a finite num-
ber of terms, one for each "Soliton." The solitons
mill be arranged with those of largest amplitude
traveling to the right, and all traveling with a
speed —,'(5n~, „/n, )c„-', of their maximum frac-
tional density modulation times the ion acoustic
speed c,. Their spatial widths are inversely pro-
portional to the square root of this fractional den-
sity modulation, and their temporal widths to its
inverse -', power.

In addition to the right-traveling integral num-
ber of solitons, the solution also predicts a left-
traveling, dispersing wave train. "'

We report here the results of an experimental
test of these predictions for a square-wave pulse
launched in a laboratory plasma. Experiments
were carried out in the University of Iowa double-
plasma (DP) device. The device is of the same
type as that developed by Taylor, Baker, and Ike-
zi" to study the evolution of ion acoustic shocks.
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FIG. l. Electron density versus time, 20 cm from
the screen, following the application of 10-@sec square
pulses to the driver chamber. Signals are labeled by
the square-pulse amplitude.

Ikezi, Taylor, and Baker" used the same kind of
device to observe the propagation and interaction
of single solitons, while Stern and Decker" have
used a DP device to generate ion-acoustic turbu-
lent pulses. (See also Wong and Means. ")

Two argon plasmas are maintained in cham-
bers (length 3V cm, diam 38 cm) separated by a
negatively biased screen. Typical operating pa-
rameters were T,=0.8 to 1.5 eV, T, &0.2 eV, n,
=—10' to 10' cm ', and pressure =2&10 ' Torr.
The plasmas were adjusted so that there was
less than 0.2 V difference in potential between
the two chambers, so that no ion beam was pres-
ent. " It has been shown that the application of
voltage pulses to one chamber (the "driver") rel-
ative to the other chamber (the "target") can effi-
ciently launch compressive or rarefactive den-
sity pulses in the plasma. " The pulses may be
studied with either a positively biased Langmuir
probe or an electrostatic energy analyzer. "
More complete descriptions of the apparatus and
these experiments will be reported elsewhere.

Three types of propagating phenomena are ob-
served when compressive square pulses are ap-
plied to the driver plasma. Figure 1 shows the
signals detected by a positively biased Langmuir
probe located 20 cm from the screen. Kith low-
amplitude («kT, ) pulses, we detect essentially
square pulses with propagation velocities equal
to e, (Fig. 1, curve a). As the applied pulse am-
plitude is increased (with fixed pulse width), the
pulse velocity increases, and the leading edge (in
time) sharpens into at least one narrow pulse
(Fig. 1, curve 5) which can be identified as a sol-
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iton. The soliton (or solitons) increase in ampli-
tude and speed with increasing applied voltage,
reaching a maximum when the applied voltage is
approximately equal to the electron temperature
in eV (Fig. 1, curve c). Larger applied pulse
voltages result in reduction in amplitude, broad-
ening and slowing the soliton, and the emergence
of new pulses ("pseudowaves"" ").

The new pulses have velocities greater than the
soliton velocities (Fig. 1, curve d). With increas-
ing applied signal, the leading edges of the pseu-
dowaves sharpen into pulses that are superficial-
ly similar in appearance to the solitons (Fig. 1,
curves e-g). The solitons have continued to de-
crease in amplitude and in curve f appear only
as a small remnant moving at c,.

%e have identified the pulses generated by the
larger-amplitude applied pulses as pseudowaves,
as described by Alexeff, Jones, and I.onngren"
and Lonngren et aE. ,"mainly because we find
that the leading edge velocity is given to within
8% by (2e@/m, )'I', where m, is the mass of the
argon ion, and @ is the appbed voltage difference.
In addition, measurements with the electrostatic
energy analyzer show particle bursts with kinetic
energy e4 for applied voltage 4. These bursts
are not associated with the solitons.

Pseudowaves can be eliminated by the applica-
tion of pulses with amplitudes less than the elec-
tron tempex ature. Multiple soliton production
can be achieved by widening rather than deepen-
ing the square well whose Schrbdingex -equation
bound states determine the number and amplitude
of the emex'ging solitons. The formation of sev-
eral solitons from a squaxe compressive pulse
is shown in Fig. 2. For narrow enough square
pulses, a single soliton followed by a dispersive
wave train moving slower than c, is seen (Fig. 2,
curve u). As the ttndt@ of the compressive pulse
is increased, the amP/itMds and velocity of the
soliton increase. A second soliton is seen to be-
gin to emerge in curve b. As the width is in-
creased further, the first soliton amplitude re-
mains approximately constant, but the amplitude
of the second soliton increases and a third soliton
is seen (Fig. 2, curve d). Further increasing the
width increases the amplitude of the third soliton
and a fourth soliton begins to emerge (Fig. 2,
curve e).

The appearance of the solitons can be under-
stood in terms of the Schx linger equation with
the attractive square-well potential. Since there
always is at least one bound state for any one-
dimensional well, we expect at least one soliton.
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FIG. 2. Applied voltage pulses and electron density
versus time, 10 cm from the screen. Electron density
signals are not found to be sensitive to the sharpness
of the edges of the applied pulses. Curves shown at the
right are calculated from Eq. (2} with dao/no-—0,12 and

co&~ = 5.5 x 106. An overall reduction of ~2 has been intro-
duced to account for observed damping of the Eaxgest-
amplitude soliton. Amplitude-dependent damping,
which has not been included, reduces the amplitude,
and broadens and separates in time smaller solitons
relative to the larger ones. No curve has been given
for curve 8 because it is seen in curve d that asymp-
totic behavior (i,e., separation of solitons) cannot be
a reasonable assumption in curve e.

The maximum amplitude of the soliton is, from
Eq. (2), 5n~, „/nc =2( IE,I/Vo) 5n, /n, . The bound-
state energy increases as the width of the well in-
creases, and when IE, I =0.65V„or 5n, „/n,
=1.3 5n, /n„a second bound state appears at IE, I

=0; i.e., a zero-amplitude soliton forms. In gen-
eral, the jth soliton should appear when c(6n, /
3nn) = (j—1)1Tq where g ls the width of the origi-
nal compressive pulse in Debye lengths. The rel-
ative amplitudes of solitons when new ones are
just appearing are g;=0.65; 0.86, 0.46; 0.92,
0.72, 0.36; etc.

Predictions of the Schrbdinger equation for the
amplitudes cannot be directly tested because of
the presence of non-negligible damping. The ob-
served damping is consistent with ion I.andau
damping. (Large-amplitude solitons, traveling
with higher velocities, encounter fewer resonant
ions and hence damp less than small-amplitude
solitons. ) Nevertheless, we find that solitons ap-
pear to retain their identity while damping~i. e.,
reductions in amplitude are accompanied by re-
ductions in velocity and increases in width. The
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ly mell-separated solitons, it can be seen that
considerable similarity with' the observed signal
can exist (Fig. 2, curves a-d), even though the
solitons still overlap.

We are indebted to Dr. R. A. Stern and Dr. J. F.
Decker for generously providing us with a de-
tailed description of their DP device, and to Pro-
fessor I. Alexeff for good advice.
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FIG. 3. Trajectories of a single soliton and ion
acoustic wave are shown. We find that the soliton ve-
locity is (0.88 +0.10) 5n~»/no from these data.

trajectory of a single soliton is compared with
that of a very small-amplitude ion acoustic wave
in Fig. 3. The curve for the soliton is a best
least-squares fit made on the assumption that the
soliton velocity is 55n~„/no, with 5 constant.
We find b=0.38+0.05, in agreement with the pre-
dicted behavior for soliton solutions to Eq. (1).

Even though the amplitudes of observed solitons
are no longer given by the theoretical expression
after the damping begins, and the relative ampli-
tudes depend on the (amplitude-dependent) damp-
ing, the number of solitons is determined by the
original well. If we approximately determine the
depth of the original well (i.e., the 5n, /n, ) from
the width of the applied pulse at the appearance
of the second soliton, we may note that additional
increments in this width should produce succes-
sive solitons according to a(5n, /3n, )'i'= (j—1)v.
The results shown in Fig. 2, curve a, with tem-
poral pulse width T correspond to a =c,v/AD =16
=v(3)'"(5n, /nc) '", or 5n, /n, =0.12. In Fig. 2,
curve d, since the width of the square pulse is
approximately 4 times that of Fig. 2, curve a,
we expect that the fifth soliton will just be emerg-
ing with zero amplitude. The data show that at
least three solitons have sufficient amplitude to
be seen. In the right-hand panel of Fig. 2 we plot
the right-hand side of Et]. (2) for comparison, as-
suming a value of 5n, /no=0. 12, and neglecting
damping. Though it is to be appreciated that Eq.
(2) represents an asymptotic solution for spatial-
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