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A theory is outlined of the aligning action of sound on nematic liquid crystals. It is
based on sound-induced stresses and forces and identifies four contributions to the. trans-
verse stress. Formulas for the threshold sound intensities of a few simple deformations
are given.

Sound is known to generate a radiation pres-
sure'~ which leads to a force density in the prop-
agating medium if there is sound absorption. The
radiation pressure and other time averages of the
second-order stresses are proportional to the
sound intensity, in contrast to the first-order
stresses which vary as the wave amplitude and
whose time averages are always zero, In an iso-
tropic medium neither sound nor shear waves
produce second-order forces perpendicular to
the wave vector. Transverse second-order
forces are possible in anisotropic solids, but
are not easily detectable. The situation is dif-
ferent in nematic liquid crystals. They combine
anisotropy and fluidity, thus permitting trans-
verse motion.

In the present note we are concerned with the

averaged second-order transverse stress (o„„'.
The z axis is parallel to the wave vector, and
the x axis is chosen such that the x, z plane con-
tains the nematic axis. %e consider only oscilla-
tions in the x, z plane. Any motions along the

y axis of our Cartesian coordinates are not cou-
pled to motions along the x and z axes or to an
incident longitudinal sound wave. A wave travel-
ing through a uniformly oriented liquid crystal
may then be expressed to first order by'

(u„,u, ) = (u~, u„) exp[ i (qz —cut )],
where u„and u, are the transverse and longitud-
inal displacements, q the wave number which is
complex because of absorption, & the angular
frequency, and t the time. The first-order equa-
tions of motion, after differentiation, may be
written as

p(d uzo —(c+ bc~~)g ug&+ $7/ h)g ugo —Ac„z g u +tv)z (dq u~ = 0.
(2)

(3)

Here p is the density, c the isotropic hydrodynamic elasticity, the hc s are frequency-dependent vis-
coelastic corrections, and the r)'s are the viscosities [their corrections are neglected as they would
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lead in (6) to powers of + higher than the fourth]. The bc's and q's depend on the alignment angle, all
coupling terms being zero for alignment parallel or perpendicular to q.

For weak coupling the two possible waves are almost purely longitudinal and purely transverse. We
disregard the latter, mainly on the assumption that it is absorbed within a much shorter distance than
the former. The transverse admixture to the longitudinal wave is readily deduced from (2) to be

sc„/c —i r]„,(u/c"1+ (bc„-Sc„,)/c —i(q„—q„„)(u/c

if one inserts the approximation

(4)

P fd /lg = (c + EC 88 ) —
XT/ g (g.

Assuming that all fractions in (4) are much smaller than unity, we obtain for the transverse second-
order stress

( )
'0x~& (Usa Rxx)~ ~~vs Res pn(d9xx/dp) 'ops &

( )
C C C C C C

(6)

From the four terms of (6) we have separated a
common factor —II. The quantity II = p((Rev, )')
= m2, 0u, o*~' is the longitudinal momentum flux
density due to osciQatory mass transport, i.e.,
the ordinary radiation pressure, with v denoting
velocity. (We remark that —II need not be iden-
tical to the total second-order stress (o„) in a
condensed medium. ) The first two terms of (6)
represent —p((Rev„)(Rev, )) which may be called
negative transverse radiation pressure. Parts of
expression (4) for M~ have been dropped in form-
ing ((Rem„)(Re@,)) for reasons to become clear
below. The third term is (dq„„/dp)((Rep)(Red@„/
ds)) . Being proportional to the density incre-
ment and the component of transverse shear in
phase with it, it takes account of the net trans-
verse stress which may arise if the viscosity of
transverse shear depends on density. The deriv-
ative dg, „/dp is adiabatic, thermal conduction
being regarded as negligible. The fourth term is
-q„,~'& ((Red', /ds)'), the contribution of second-
order viscosity q~'~. To eliminate q in the last
two terms we have used q'= p~'/c instead of the
more complicated Eq. (5), which will be justified
immediately.

The coefficients in (6) are composed of mater-
ial constants multiplied by angle-dependent fac-
tors. A set of such constants has been formu-
lated for first-order viscosity. ' An analogous
set applies to viseoelasticity, while a new set is
needed for second-order viscosity. It is not at-
tempted here to express (o,) in terms of such
constants as this would require a much longer
paper. Symbolically putting q = A7; ~e = p~'y',
and g&'&=A&', where the A's are elasticities and
t11e 1's Maxwell relaxation times, we see that
exactly those terms were retained in (6) that
vary as ~4. They all may be of similar magni-

tude, as each contains the same powers of cou-
pling A' s, noncoupling A's or c's, and v's. It
should be noted that (6) holds only if v «1/i
with respect to aQ relaxation times.

Let us now discuss the hydrodynamic stability
of an infinite nematic layer of constant thickness„
taking both the initial alignment and the wave
vector of sound to be normal to the bounding
wa3.ls. Introducing the tilt angle q, to be posi-
tive for tilt of the nematic axis toward x& 0, we
may write for very small cp

(v„) = —1I~y with I~l =(rl(u/c)'.

Here g is a compound quantity having the dimen-
sion and possibly the magnitude of a viscosity.
If y varies with z, the stress (7) leads to the
transverse force density

f„=d(v„,) /dz = —rro. dq /dz,

which may produce a transverse flow. Assuming

y to be a function of z only, one has the following
steady-state balances for the force and torque
densities:

—linda/dr+ q, d'(v„) /dz' = 0,

K33cPp/d8 +Kid(vz) /dz =0~

where (u) is the second-order velocity, K» the
curvature-elastic modulus for bend, g, a viscos-
ity coefficient, and x, the ratio of torque density
to shear rate. (Again the assumption is

l pl «w/
2.) Combination of the equations yields

d'y/dg'= e dip/dz, with e = —lio.x, /q, &„. (11)

Physically sound solutions are possible only for
c &0.

In our geometry there can be no force for y=—0,
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Fig. 2. Schematic orientation pattern associated
with vortical Qow. The circles indicate vortices.

FIG. 1. Representative orientation lines in cases (a)
and (h) of text. The arrows indicate the direction of
flow,

which suggests that any deformation and the ac-
companying Qow require a threshold sound inten-
sity. For the sake of simplicity we assume the
intensity to be practically equal all over the sam-
ple. We wish to set up formulas for the thresh-
old, considering two well-defined cases: (a) rigid
wall alignment j(L/2) = y(-I /2) =0, and (b) vir-
tuaOy loose normal wall alignment, the only re-
striction being q(L/2) = —y(- L/2). Here L is
the thickness of the sample extending from z
= -I./2 to z = L/2. A generally valid boundary
condition is, of course, (v„(L/2)) = (v„(-L/2)) =0.
Any infinitesimal deformation y(s) may be ex-
panded into independent Fourier components. The
uniform orientation pattern is at its instability
threshold lf the lollgest wavelength compatible
with the boundary conditions i.s in neutral equilib-
rium. In case (a) the wavelength is L and the
corresponding threshold sound pressure is

(12)

There are two deformations with this threshold,
as indicated in Fig. 1, which may also occur in
linear combinations. In case (b) the maximum
possMe wavelength is 2I., leading to a threshold
sound pressure

(13)

There is only one type of solution, shown in Fig.
1, but as in case (a) the direction of flow is ar-
bitrary within the x, y plane. Straight Qow of the
same direction throughout the sample is of course
not possible in many practical cell geometries,

Instead of straight flow, sound might produce
vortices, as sketched in Fig. 2. It would seem
that instabilities of this kind have higher thresh-
olds than (12) or (13). However, only a detailed
study involving a large number of material con-
stants can show which type of deformation is
favored at a given sound intensity. Account has
to be taken not only of transverse forces, but
Rlso of tile lollgltlldlllR1 fox'ce density 8 (0„)/Bx,

Furthermore, different thresholds are to be ex-
pected if the initial alignment of the nematic axis
is parallel to the walls.

The hydrodynamic instabilities are linked with

optical changes which are observable with light
transmitted normally through the liquid-crystal-
line layer. A normally aligned layer appears
at first isotropic and turns birefringent under
straight flow. Vortical Qow should result in do-
main patterns similar to those seen with electro-
hydrodynamic instabilities. ' Bixefringencee and
domains" have, in fact, been observed under
sound action in thin layers of nematic liquid crys-
tals. In one of the experimentse the initial align-
ment was controlled, the nematic axis being nor-
mal to the bounding walls.

It is not yet possible to predict threshold inten-
sities from our theory, mainly because of a lack
of known material constants. In order to make
at least a tentative estimate, we put g = 10 P in
(7). This may be an adequate number to describe
the first-order viscous contribution to (0„,) of
the room-temperature nematic P'-methoxyben-
zylidene -p -n-butylaniline (MBBA). Its shear
viscosities are known to be 1 P and less, ' but it
has been found with other nematics' that bulk
viscosities exceed shear viscosities by more
than a factor of 10. Using (13) Rnd taking L= 25

pm, 1),/x, =1, Il»=1x10 'dyn, ~=2mx10' sec ',
and c = 2.5x10'0 erg cm ', we obtain

II, =2.5x103 dyn cm 2.

With v, =1X10' cm sec ' for the sound velocity,
this results in the threshold intensity

I, = II,v, = 25 % cm '.
This very high value is possibly lowered by the
viscoelastic contribution to (0„,) as there are
indirect indications of a strong viscoelastic ef-
fect in MBHA. '0 The experimental thresholds"
at the same thickness and frequency and also at
room temperature seem to be of the order of
10 ' % cm '. We suspect that the materials used
were more viscous than MBBA,"which might
help substantially to explain the low intensities.
It is of course also possible that the surprisingly
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strong action of ultrasound is due to the depen-
dence of viscosity on density or to second-order
viscosity, both of which ax'e totally unknown for
any bqMd crystale Another posslb111ty to gen-
erate vortices, but no straight floe, is Bernard's
instability in a thermal gradient. " The experi-
mental reports" do not refer to this mechanism
which would probably have been easy to recognize
(for instance, by very long response times).

In summary, it seems that the proposed mech-
anism of sound action on nematics is plausible
and may provide a means to explore novel mater-
ial properties. Our high estimate of the thresh-
old is based on fairly unfavorable assumptions.
The use of larger viscosities and thicknesses
than those inserted above would lower the pre-
liminary theoretical value by oxders of magni-
tude.
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Compressive square-wave pulses are launched in a double-plasma device. Their evo-
lution is interpreted according to the Korteweg-de Vries description of Washimi and
Taniuti. Square-wave pulses are an excitation for which an explicit solution of the
Schrodinger equation permits an analytjical prediction of the number and amplitude of
emergent solitons. Borsts of energetic particles (pseudowaves) appear above excitation
voltages greater than an electron thermal energy, and may be mistaken for solitons.

A mathematical description of slightly nonlin-
ear, one-dimensional, ion acoustic waves in a
collisionless plasma vrith cold ions has been giv-
en by %ashimi and Taniuti. ' The resulting equa-
tion for the fractional perturbation of the ambient
ion number density is the Korteweg-de Pries
equation, '

where 6n = 5n(x, t) is the perturbation on the ion

number density, and no is the steady-state con-
stant density of the plasma. x ls the spatial co-
ordinate measured in units of the electron Debye
length A. D and t is the time measured in units of
the inverse ion plasma frequency, v~& '. Equa-
tion (l) is written in a coordinate frame moving
to the right vrith an ion acoustic speed c,=A. D~~, .

Equation (1) has been intensively studied in the
last decade. 4 " In particular, an asymptotic
long-time solution has been given" rvhich applies
to density perturbations 6n(x, 0)/n, which are pos-


