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Calculation of Dynamic Critical Properties Using Wilson's Expansion Methods
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The dynamic critical behavior of a continuum analog of the kinetic Ising model is stud-
ied using a generalization of Wilson s expansion methods. Results are found which disa-
gree with the mode-mode coupling approach and the conventional (Van Hove) theory.

A major advance in our understanding of the
properties of a system near its critical point has
resulted from the discovery of methods for ob-
taining static critical exponents as power series
expansions in ~=4-d, ' and in 1/n. ' (d is the di-
mensionality of the system, and n the dimension-
ality of the order pa. rameter. ) We have extended
these techniques to calculate the exponent for the
time-dependent critical behavior of a simple
system Se time-dependent Ginzburg-I andau
(TDGL) model. This is a continuum generaliza-
tion of the kinetic Ising model introduced by
Glauber, ' in which time dependence is introduced
via weak coupling to an infinite heat reservoir at
each lattice site. In the case where the order
parameter is not conserved, we find a character-
istic frequency ~~-k'"", with c ~ 0 in all cases.
This disagrees with the conventional (Van Hove' )
prediction (c= -1), and results inferred from
mode-mode coupling theories. ' When the order
parameter is conserved, on the other hand, we
find ~~-k4 ", in agreement with these theories.

The TDGL model is described by the equatiens'

~s t' 1 fa
&t &ksT Gs„

5H = (r, —V'+ 4u, gs, ')s -k.
B Sn ~ I

Here s (x, t) is the u component of the order pa-
rameter at position x and time t, x is a point in
a d-dimensional space, and n varies from 1 to n,
the Hamiltonian H is the one employed byWil-
son, ' except for the inclusion of an infinitesimal
position and time-depe-ndent magnetic field

ksTk(x, t); and g„ is a Langevin noise source
with mean zero, and correlation function

(q„(x, t)rl (x', t'))= 2re(x -x')0(t —t')0 „.. (3)

It is understood that only fluctuations with wave
vectors smaller than a cutoff A of order unity
are to be included in the above, but frequencies
may range from -~ to ~. If I' is proportional
to V', then the integral over space of s is con-
served, and es /Bt is described by a diffusion
equation for T & T,. We shall primarily discuss
the case where I" is a constant, so that the value
of the k = 0 component of s is not conserved,
i.e., it relaxes at a finite frequency above T,.
In either case, the static properties are the
same, and all thermodynamic properties and
equal-time correlation functions are identical to
those calculated by Wilson. '

We shall study the linear response function

)((k, to), which relates the expectation value of s
to the time-dependent field h. , for small values
of the wave vector k and frequency ~. For T = T„
according to the dynamic scaling hypothesis, ' we

expect to have

X '(k, &u) = k' "f((u/(u„),

(d„=Ik,

where z is an unknown exponent, and f is a di-
mensionless function. Note that y is equal to the
static correlation function g(k)-k" ' when re=0,
so that f must approach a finite constant when its
argument approaches zero. The exponent g has
been calculated by Wilson' to be q= e'(n+ 2)/2(n
+ 8)'+ 0(~') . For 2 & d & 4, Ma' has found

r) = 4n [(4/d) - 1 ] sinn( sd - 1)[m( ~ d —1)B(& d —1, s d —1)] '+ O(n '),

where B(u, v) is the beta function.
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It is convenient to write }{(k,cu) in the form

}{(k,(o) '=G, '(k, {d)+Z(k, (u),

where |"p ' is the value of y 'when up=0, namely

G, '= —i {d/I"+r, +k'

(6)

(7)

A perturbation expansion for Z(k, &u) can be developed, whose general structure is described in Ref. 6
for the TDGI model of a superconductor (n=2). A typical diagram of order u, ' for the self-energy is
shown in Fig. 1(a). The value of this diagram is

, f'd"k, d k, d dc@,
Z{,)(k, (d)= (n+ )( u, )')i(2 )g (2 )', -2

1 1x G,(k —k, —k„{L—v, —m, )—ImG, (k„{d,)—ImG, (k„u,). (8)

Equation (8) in fact gives the entire contribution
to Z of order Qp other than a term independent
of k and ~, which contributes to a renormaliza-
tion of T, but does not affect the correlation
functions at T, .

Now let us examine (4) and (8) near four dimen-
sions. In the static case, Wilson' has argued
that the asymptotic form of g(k) at T= T, and k
-0 can be obtained directly from the perturba-
tion series for g provided one chooses u, = 2s'e/
(n+ 8) (correct to lowest order in e}, and system-
atically expands all diagrams in powers of e. We
assert that the same procedure will yield the
correct form for the dynamic correlation func-
tion. To apply the Wilson prescription, we first
note that when rp =up = 0, which is the correct
limit for the critical point in four dimensions,

}{ ' is given by (7}, and the exponent z of (5}has
the value 2. If we take the limit where k=0,
while &a/I' is small but finite, we expect in gen-
eral that y

' will have a finite value. According
to dynamic scaling [Eq. (4)], }{

' will then have

the form

}{(0,(u} '- —i((u/I') [1-u,'y, ln(u], (10)

where b, = 3(n+ 2'} ln(&)/8n'. This is compatible
with (9) and the expressions for g and u, if and
only if ~ = b,up', or

with c = 6 ln( f) —1, to order e'. We note that c
is independent of n in this case.

In order to check the dynamic scaling assump-
tion (4) to order e', we consider Eq. (8) in the
limit {d-0, k -0, with m/I'k' finite. We find

g i=C M~

where 1 —}{.=(2 —r}}/z. Furthermore in the limit
0, we should have A. -. 0, and g, -il

In order to compute }{ '(0, &u} to order e', we
need only evaluate (8) at d = 4, with k = 0 and r,
=0. The leading term for small co is proportion-
al to ivlnco. The coefficient of this term may be
evaluated, and we find

}{ '(k, cu)=k'[1 —u, 'b, lnk] —t'(ru/I }[1—u, 'k, ink]+u, 'O'C(v/I'k'), (12)

where k, =(n+ 2}/8m4, g, = 2b„and 4 is a regular function of its argument, in the sense that all deriva-
tives exist at {d/I'k'-0. Using Wilson's expression for q and Eq. (11), it is now easy to check that
Eq. (12} is consistent with the dynamic scaling assumption (4) to order e, with the function f identified
as

f(x) = 1 —i++ e '[2s'/(n 8)+]'4(x}.

OOOO

(b)

PEG. 1. {a) Diagram contributing to the self-energy
to order e'. (h} General form of the self-energy to or-
der 1/n.
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t'2(u'i " d v d~p f(p, v)

rn i 2mv (2w)" [I' '((u —v)'+ (k -p)'j'

Taking k=0, and v small but finite, we again
find ImZ to be proportional to coin~; comparing con
with Eqs. (9), (4), and (5), we find Eq. (11), not
with but

(14)

(15)

sidered here (order parameter conserved or
conserved} have identical static properties,
have different dynamic exponents. On the

other hand, renormalization-group arguments'
certainly support the idea that for n = I, our con-
tinuum TDGL models should have the same criti-
cal exponents as their discrete kinetic Ising
model counterparts, independent of the details
of the lattice, or of the coupling to the reser-
voirs, etc.

The TDGL models differ obviously from some
of the more commonly considered models, such
as the isotropic Heisenberg ferromagnet or anti-
ferromagnet, in that they have no propagating hy-
drodynamic modes for the order parameter, even
for T &T,. The TDGL models are more analogous
to anisotropic Heisenberg models, where there
are also no propagating hydrodynamic modes. Ex-
amples include the uniaxial ferromagnet, where
the order parameter is conserved, and models
where the order parameter is not conserved, such
as the uniaxial antiferromagnet or the anisotropic
ferromagnet without a symmetry axis. The TDGL
models differ even from these, however, in that
the assumption of an infinite heat reservoir at
every site eliminates any effects that energy
conservation might have on the dynamic critical
properties. Within the spirit of mode-mode cou-
pling theory, ' one might ask whether the absence
of a low-frequency thermal diffusion mode in the
TDGL models will affect their dynamic critical
exponents. In contrast to the TDGL and kinetic
Ising models, the isotropic Heisenberg ferromag-
net or antiferromagnet does not seem to approach
a simple Gaussian fixed point for their dynamic
properties as d -4 or n-~, and the methods of
the present paper are not directly applicable.
For example, by studying the Heisenberg ferro-
magnet in the limit of long-range forces, or by
using dynamic scaling, one finds that the expo-
nent z does not reach its conventional value
(z =4) in four dimensions. '

The frequencies v~ found in the present paper

( 4 i da( ,'d —1, ——,'d —1)
4 d, l 8|' d&[&(2 &}]

(16)

where we have used Ma's expression' for q, giv-
en in the equation preceding (6). It may be
shown from Eq. (16) that for d = 4, c = 61n(&4) —1,
in accordance with our previous result, while
for d = 3, c = &, and for d = 2, c = 0.

The case where the order parameter is con-
served is similar to that considered above. Equa-
tions (1)-(8)are essentially unchanged, except
that I' is everywhere replaced by A.,k', where Q
is the "unrenormalized transport coefficient"
for s. When we evaluate the self-energy in Eq.
(8), however, for the case where &u -0 and k -0,
with u&/A k' small but finite, we find no term of
order (&u/A, k') Imu. Thus there is no correction
to the conventional form, X '(0, &o)-iso/A k'. We
therefore have ~„-A k' ", as predicted by the
conventional theory. Similarly, if we consider
(8) in the case where v/A, k' is a finite constant,
we find

Z(k, &u)
- —rik'Ink+ b,k'P(ur/A, k'), (17)

where b, is a constant of order e', and q is a di-
mensionless regular function of e/gk'. Again,
this result shows that the conventional theory is
correct in this case, and that the dynamic scaling
assumption is verified to order e'.

Let us comment on the relevance of our calcu-
lations to other systems. For static properties
the universality hypothesis leads one to believe
that the exponents of the "Ginzburg-Landau"
model' will be the same as those for other sys-
tems with the same symmetry and dimensional-
ity. For dynamic critical phenomena, we again
expect to have a certain degree of universality,
but the classes of systems having the same expo-
nents clearly must be smaller than for static
properties alone. For example, the two systems

In the limit &u/I'k -~, of course, C(v/I'k') diverges as ib, (w/I'k'}in(&u/I'k'), in order to make contact
with (9) and (10}.

Let us now turn to the expansion in I/n. As in the static case, ' in order to evaluate y
' to first order

in 1/n, we must sum the diagrams shown in Fig. 1(b}. This yields, for T= T„
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are always equal to or smaller than those pre-
dicted by the conventional theory. This is con-
sistent with a rigorous theorem that has been
proved" for purely dissipative models of the
present type, and may be contrasted with cases
such as the Heisenberg ferromagnet or antiferro-
magnet where the characteristic frequencies,
according to dynamic scaling' or the mode-mode
theories, ' are always larger than the convention, -
al predictions. A characteristic frequency slow-
er than the conventional theory has previously
been obtained for the two-dimensional kinetic
Ising model by Yahata and Suzuki, "based on
high-temperature series expansions. Specifical-
ly, these authors found a relaxation frequency
tu-x' for the 0 = 0 component of the magnetiza-
tion above T,(i.e., z = 2), whereas the convention-
al theory predicts z = ~7 for this case. We note
that the result x=2 (c=0) for two dimensions is
precisely the one obtained in Eq. (16) to leading
order in 1/n. Recently, however, Schneider,
Stoll, and Binder" have studied the same model
using a Monte Carlo molecular-dynamics ap-
proach, and find results which agree with the
conventional theory for the relaxation of the uni-
form mode.
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Quantitative estimates are made of the maximum value of the superconductive transition
temperature ~~ attainable through combining electron-exciton interactions with electron-
phonon interactions in metal-semiconductor sandwiches. Because of covalent instabilities,
it is argued that no enhancement of &~ can be expected if the initial value of &~ in the pure
metal was greater than 5'K.

Some fifteen years ago the discovery by Bar-
deen, Cooper, and Schfieffer' (BCS) of a micro-
scopic theory of superconductivity raised hopes of
achieving higher superconducting transition tem-
peratures T, through careful choice of coupling
parameters and sample configurations. However,
as Matthias has often emphasized, ' these hopes

have yet to be realized. One reason for this is
that the mechanism utilized in the BCS theory,
the electron-phonon interaction, is wel1 under-
stood in the normal state only for structurally
stable metals like Al (with low values of T, ) and
not for structurally unstable metals like Pb, NbN,
and Nb~Sn with high values of T, . After more
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