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from J = 0 expectation values using Racah algebra
techniques. The splittings from II and II~' were
calculated with a sequence of eight wave functions,
the results with the largest wave function (165
terms) being given in Table I. For each wave
function the total splittings from II' and II~' were
calculated and the four sequences of values extra-
polated to give the entries of Table IH The con-
vergence is quite smooth and the accuracy ob-
tained is more than sufficient for the present
comparison with experiment.

The separate contributions and totals are listed
in Table III. v~ agrees well with experiment and

yields a value of e accurate to ~3 ppm and con-
sistent with Ref. 1. Considerable work remains
to find v» to comparable accuracy (-10 ppm).
Completion and improvement in accuracy of the
second-order calculation is mandatory, and at
least an estimate of the e'ngc' terms is desirable.
Consistency of the two values will provide a non-
trivial check of the computations. A complete
and independent recalculation of the effects evalu-
ated here would provide increased confidence. It
does appear that the helium fine structure will
ultimately provide a value of e accurate to better
than one part per million.
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In view of the recently reported discrepancies between theoretical calculations and ac-
curate experimental measurements of muonic x-ray energies for several elements in the
energy range 150-440 keV, we have recalculated the vacuum polarization corrections,
Our results reduce, but do not eliminate, the discrepancies. We discuss the effects of
a possible anomalous coupling of the muon to a speculative scalar meson of the type sug-
gested by Weinberg.

In a recent paper on the experimental test of
the theory of muonic atoms, Dixit et al. ' have re-
ported measurements of muonic x-ray energies
in a number of elements in the energy range 150-
440 keV. They picked for measurement only the
higher transitions in atoms with spherical nuc1ei
and made special efforts to measure these transi-
tions with an absolute precision of 15-21 eV.
Since these high transitions are only a little af-
fected by the nucleus, the measurements could
serve to test the extent to which the existing theo-
ry of such hydrogenlike atoms, namely that based

on the Dirac equation together with applicable
atomic and vacuum-polarization corrections,
works. The prinicpal correction to the Dirac en-
ergy in this energy range turns out to be that due
to e -e ' vacuum polarization. These corrections
were calculated by Fricke'; and, using these cal-
culated numbers, Dixit et al,.' arrived at their
theoretical values for the transition energies.
Corrections due to nuclear polarization, the
screening effect due to electrons, the Lamb shift
and relativistic corrections to the reduced mass,
etc. are small but were nevertheless taken into
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account in arriving at the theoretical values.
Dixit et al. concluded from their work that the
theoretical values for the transition energies„
after taking all known corrections to the Dirac
energy into account, were consistently larger
than the experimentally measured values. As al-
ready mentioned, since the principal correction
is that due to vacuum polarization, the question
arose as to whether these corrections are being
calculated correctly. In view of the importance
of this question and the implications of the dis-
crepancy between theory and experiment, we de-
cided to recalculate the vacuum-polarization cor-
rections.

This calculation was done in a straightforward
manner. As is well known, the contribution to
the vacuum polarization from e -e pairs is
made up of the following parts: (a) the Uehling

term, of order n, (b) terms of order n', and

(c) terms of higher order in Zn. Of these, the
contributions due to (a) and (b) increase the bind-

ing energy of the muon, whereas the contribution
from (c), for example, the term of order (Zu)',
den eases the binding energy of the muon.
Fricke, ' in his work, does not have the correct
sign for the (Zn)' contribution. We have taken
the well-known expressions for the modification
of the photon propagator given to any order in a
in momentum space and directly calculated the

energy shift of the muon level from the formula

2ZQ

0

x t (g +f')y'dr —U(q); (1)
qr q'

a = 137.03602 is the fine structure constant, g
and f are the respective large and small compo-
nents of the Dirac wave function for the muon,
and U(q) represents the propagator modification
with q the three-dimensional momentum transfer.
The muon mass in this work has been taken to be
105.6599 MeV. For the Uehling term, U(q) is

(2)

where m, is the electron mass, 0.5110041 Me&.
For the terms of order e', four Feynman dia-
grams contribute as shown in Fig. 1. The first
of these involves simply the square of U(q) for
the Uehling term above. A c'ombined expression
for the modification due to diagrams (b), (c), and

(d) of Fig. 1 in a form suitable for numerical
computations has been given by Kallen and Sabry, '

(b)

(d)

FIG. 1. Feynman diagrams for n2 corrections.

quoted by Fricke' in his paper in Eqs. (18) and

(19). One misprint has been found in this expres-
sion: The sign of the term ~ 6'ln'(1+6/)1- 6))
is incorrect. Using these expressions in Eq. (1),
the contribution of order 0.' was obtained by car-
rying out the q integral numerically with a twen-
ty-point Gaussian quadrature. We checked our
results for the shifts in uranium (Z = 92) with
those published by Fricke. ' Our results (in keV)
for the combined effect of diagrams (b}-(d) are,
Sd,q„0.0956; 4f,)„0.0353; 5g91„0.0155; Sd,q„

are to be compared with Fricke's numbers, for
Sd»„0.099; Sd,&„0.095; and 4f»„0.033; which
are in reasonable agreement. For the contribu-
tion from diagram (a) in Fig. 1 for uranium we

get, for Sd»„0.0386; 4f„„0.0102; 5g, , 0.0030;
3d»„ 0.0437; 4f»„ 0.0108; and 5g„„ 0.0031;
which are to be compared with Frieke's values,
for Sd»„0.060; Sd»2, 0.060; and 4fs&„0.020.
For these the agreement is not so good.

For calculating the higher-order Z corrections,
we used the calculations of Wichmann and Kroll4
to generate the U(q) needed in Eq. (1) for obtain-
ing the energy shifts. Frieke has also given re-
sults for these contributions, and has given the
same sign as for the n' corrections. This is
erroneous; the sign of these contributions shouM

be opposite to that of the contribution from the
Uehling term as is apparent from Ref. 4. Wich-
mann and Kroll have given expressions for a
quantity called U(p) in Eq. (58) of their paper,
which is closely related to the U(q) we want. The
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TABLE I. Calculated energy shifts for n2 and higher
Zn corrections.

EE(kev)

precise relation is

U(q) =(2iq) 'J q(p') dp',

Level

47 jd5(2
3d3(
4f
4'5&Z

48 jd
3d3(2
4f (

50 3d5(2
3/2

4f7&2
4'5(2

56 3d

3d3)2
4f7(2
4f5(2
589(2
87(2

82 4f7(2
4f5]2
5g9l2

Fi.g.1
(~)

I'ig. 1
(b, c,d)

0.0046
0.0048
0.0009
0.0009

0.0163
0.0168
0.0056
0.0056

0.0053
0.0055
0.0010
0.0011

0.0183
0.0188
0.0063
0.0063

0.0018
0.0082
0.0017
0.0017
0.0003
0.0004

0.0249
0.0258
0.0087
0.0088
0.0036
0.0036

0.0068
0.0011
0.0019
0.0020

0.0256
0.0264
0.0111
0.0113

0.OO~3 0.0154
0.0045 0.0158
0.0008 0, 0052
0.0008 0.0053

(Zu)" and
higher

-0.0166
-0.0169
-0.0012
-0.0072

-0.0182
-0.0185
-0.0079
-0.0080

-0.0218
-0.0223
-0.0095
-0.0096

-0.0361
-0.0370
-0.0161
-0.0163
-0.0079
-0.0081

-0.0930
-0.0950
-0.0485
-0.0490

where Q(p) is the Laplace transform of the in-
duced charge density for which limiting forms
are given for small and large p. We have found
a continued-fraction interpolation in I/p, which
interpolates for Q(p) smoothly between the large
p value given in Eqs. (69) and (70) of Wichmann
and Kroll's paper and Eq. (59) of the same paper,
valid for small p. The instability and accuracy
of the continued-fraction interpolation was checked
by varying the input points, and insignificant
changes were produced in the numerical results.
This interpolated expression was used to obtain
U(q) from Eq. (8), which was then used to find
the the shifts from Eq. (I). The effect of the
change in the sign of the higher-order Zu con-
tributions is that the combined effect of the u'
and Zot terms is much reduced. For high-Z ele-
ments, the higher Zn contributions win out over
the o.' contributions, thus giving a net decrease
in the binding energy of the muon for high-Z ele-
ments.

We give below the results of our calculations
in Tables I and II. In Table I we give the shifts
for the n' and higher Zn terms for the levels of
interest. Taking the values for the shifts as giv-
en in Table I, and taking all other corrections as
given by Dixit et al. , we give in Table II (column

TABLE II. Comparison of corrected transition energies with experiment.

47

48

50

56

82

Transition

5/2 3/2

7/2 5/2

5/2 3/2

4f7/2 315/2

4f5/2 — 3d3/

7/2 5/2

5/2 3/2

7/2 5/2

g7/2 5/2

~9/2 7/2

'g7/2 — 4'5/2

Et„(kev)

308.464

304.781

321.997

317.990

349.982

345.257

441.367

433.912

201.280

199.913

437.761

431.346

E(expt) (kev) Et} (kev)

308.428 + 0.019 308.422

304.759 +- 0.017

321.973 — 0.018

304.741

321.951

317.977 + 0.017 317.946

349.953 + 0.020 349.929

345.226 & 0.018 345.206

441.299 + 0.021 441.288

433.829 + 0.019 433.837

201.260 +- 0.016 201.265

199.902 + 0.015 199.898

437.687 + 0.020 437.694

431.285 + 0.017 431.283
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3) the corrected values for the transition ener-
gies in keV. The uncertainties in the values of
E,b in Table II range from 5 to 10 eV, and are
the same as in Dixit et al. We see now by a com-
parison of the theoretical and experimental val-
ues that the discrepancy is reduced considerably,
the only transitions having any significant dis-
crepancy being the 4f-3d transition in Ba and the
5g-4f transition in Pb.

We have also considered the effect of the finite
size of the nucleus on the vacuum-polarization
corrections: The rather complicated convolution
integral required to do this in configuration space
becomes a trivial multiplicative factor in the mo-
mentum-space integral. Taking the uniform mod-
el for the nuclear shape, we find that the individ-
ual shifts are increased by rather less than 1/p,

giving less than 10 eV from the Uehling term it-
self, and correspondingly smaller corrections
from the higher-order terms. A more realistic
model for the nuclear shape can hardly be ex-
pected to give rise to any significant difference.

An effect of the same magnitude arises if the
vacuum-polarization potential is included in the
Dirac equation itself, rather than treating it per-
turbatively as we have done. The E,h in Table
II is, in fact, calculated by the former method;
the difference between this value and the pertur-
bative value is of the order of 10 eV.

A number of authors" have suggested a possi-
ble anamolous interaction of the muon via a sca-
lar field. The model suggested by Barshay, ' with

a scalar meson of mass around 750 MeV, turns
out to give shifts of less than 1 eV for the states
in which our interest lies; this is because the
large mass implies a very short-range force

which dominantly affects only the S-wave states.
We note that the 4f-3d transition in Ba and the 5g-
4f transition in Pb have almost equal discrepan-
cies of about 70 eV. This enables us to put a
rather good upper limit on the mass m, of the
scalar meson of about 8 MeV. Assuming this
mass, the required coupling constant is 6, =g,&&

xg,»=6X10 '. The final column in Table II
shows the theoretical value, including the effects
of this particle, once again incorporating the ef-
fects of the finite nuclear size. It is remarkable
that the remaining discrepancy is eliminated:
The reader is at liberty to regard this as evi-
dence for a physical particle of mass 8 MeV,
coupling mainly to p. 'p. . It is amusing to specu-
late that if this particle is very weakly coupled to
e 'e, it would escape experimentally detection,
as well as provide a mechanism for the breaking
of LL(,e universality.
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The EPR of Cea+ has been observed in. sites of cubic symmetry for the first time. The
unusually large deviation of the observed g values for Ce" in CaO, SrO, and BaO from
the theoretical value calculated for a pure I', ground state can be attributed mainly to
static crystal-field admixtures.

The electron paramagnetic resonance (EPR)
spectrum of Ce" (4f ' configuration) in cubic sin-

gle crystals has previously been the subject of
numerous investigations. ' ' Until the present

work, however, no EPR spectra have been re-
ported which could be attributed unequivocally to
Ce" in a cubic symmetry site. ' The observation
of the EPR spectrum of Ce" in a site of local cu-

18


