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We present a theoretical study of formation and destruction of magnetic surfaces in
toroidal systems. As applied to levitrons the theory agrees with the numerical results.

Perturbed magnetic surfaces in toroidal sys- cients are given by
tems are equivalent to nonlinear oscillating sys-
tems with rotational transform for frequency. xi=lav) /a1l /v (1.2)
Resonances that transform the unperturbed sur- In the following, we assume that x > €'/2, This
faces into a structure of magnetic islands we call  agsumption is verified for the levitron (refer to
primary resonances, and the secondary vesonanc-  mTaple 1.
es transform the bound-state~like contours of a In the vicinity of a given resonance stable is-
given island into a similar structure of secondary
magnetic islands. To every magnetic island we I+rsiné
attach two types of stochasticity, external due to 1.20 Ti"=0402ﬁﬂ/ ) .20 Titt:005°
the overlapping of primary resonances and inter- : :o,-'/‘// =0 u"«‘f/"
nal due to the overlapping of secondary resonanc- .10 /7,, / 1104
es (see Fig. 1). f.‘/,.v’,’ ’/' ’V;

1. Nonlinear oscillating systems.—We consider 100~y 1\} \ 100 { ;
the nonlinear equations "\ \\ RN

0909 "as, N 0901 “,‘
dI/dt =(e/v)[v?*r (1, 6, t) ]+ O(€?), 050 i
, (1.1) 050
de/dt =v{l +e[v?¥11(7, 6, t) | + O(€?)},
1.20d Tit:01°

where I' and II are periodic functions of # and ¢, =0
and € is a small parameter. 6 and 6’ are intro- tod
duced to allow I" and II to include terms that are Cpt
not functions of v. We derive Egs. (1.1) for levi- !-Oo-éé{
trons, where 27y (l) is the rotational transform. .
(I, 6) are the action and angle variables corre- 0907 F
sponding to (372, ®), where », ®, and z are the
toroidal coordinates, and ¢ is determined from 0'80'0_50 ;
the relation dt=dz/B,. The major radius of the I+rcos¢
torus is normalized to 1. Equations (1.1) were © @
also derived for the stellarator.! FIG. 1. (a) A closed contour of the 7 resonance.

1.1, Primary resonances: We let v(I) be posi- (b) The perturbation is doubled and the contour is

heavily distorted. (c) The perturbation is doubled
again, the contour is completely destroyed, and sec~
ondary magnetic islands appear. This is a typical ex-
ample of destruction by internal overlapping. The 27

tive between the central magnetic axis and the
separatrix. (v<O0 can be treated similarly.) Pri-
mary resonances are obtained from secular con-

tributions and are characterized by m v, -1;=0 resonance after reaching its maximum flux in part (c)
where m, [; are the lowest positive integers sat- is seen partially destroyed in (d). (The numerical re-
isfying m;v; -~ 1;=0. Their nonlinearity coeffi- sults are taken from Ref. 6.)
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TABLE I. For the levitron € is a tilt angle. The
theoretical tilts for which the resonances are com-
pletely destroyed are approximately equal to the small-

est of €;,¢;;. The €, are the numerically measured
critical tilts. The x; represent the nonlinearity coeffi-
cients.
EJ- €jj €c
v x; (deg) (deg) (deg)
3 1.256 (2.75) 5.70 2.50
5/2 1.074 (2.75) 4.35 2.00
2 1.045 4.95 (3.70) 3.00
3/2 1.140 1.68 (0.76) 0.70
1 1.300 0.54 (0.07) 0.30
1/2 2.200 0.54 (0.04) 0.15
1/4 2.280 ~0.244 (~0.01) <0.02

land contours may occur in the region €'/2I; ~ | AIl
<« I;. When we expand (1.1) in this region and
average over fast oscillations, we get

dal/dt = (2€/Vi)fug(1{7 u),

1.
du/dt = 1 Al (1.8)
where u=1;t-m 0, u=-m;dv(l;)/dl, and
28
fo, I u) =£2L11— foﬂ T, -u/m;+vt, t)dt. (1.4)

Equations (1.3) can be derived from the Hamil-
tonian

K(AL u) =$p(a? = (2¢/v)) f, fo L, 9) dy, (1.5)

where surfaces of constant K will represent the
island contours. The condition that Al be real de
fines a discrete set of intervals for u variations,
thus forming m ; families of contours separated
by a local separatrix. Each family we call an is-
land, the center of which is an elliptic singular-
ity. Relation (1.5) has been used to plot some
magnetic island contours for the levitron.?

The primary resonance width ©; is related to
the maximum action excursion by €; =v; x;(max

e [ Ty dy,

11/2 3-2e

h(Ad, £) =3M (AJ)? -

|AL1)/T;.
Q=220 /1) V2 0 F (L, iy my),

We get
(1.6)

where F;(I;,1;,m;) is a form factor which charac-
terizes the system and depends on the resonance
parameters.

1.2. Island perturbation and secondary reso-
nances: We let{a j}l”“ be the set of elliptic sin-
gularities, and renormalize ¢ to 7 =v;¢{. The is-
land oscillations [in terms of v, = Al(u(w))), w
=(sgnp)#,;, where #;=u—a;, and 7], are of the
libration type. If we introduce the action and an-
gle variables (J, ) corresponding to (v;, w;), the
island contour equations become

dJ/dT =0, dn/dTt=w, 1.7

where w is a positive function of J in the region
between the elliptic singularity and the local sep-
aratrix.® At the local separatrix w =0,

The island perturbations obtained from Egs.
(1.1) perturb (1.7) as follows:

3)1/2
A(J’ n, T)’

d _ (myxge
dTAJ w(zl‘)llzyi3-2e’

(1.8)

where A(J, n, 7) is a periodic function of  and 7,3
and e’=06+e and e is the lesser of 6 and &',

Secondary resonances are characterized by
q,w,—-p,=0, where p,, q, are the lowest positive
integers satisfying q,w,-p,=0. We let M =-gq,
Xdw(dy)/dd, &=p,T—q,n, andfwk(J §)= <A(J &/
q, +w,T,7T);. We linearize (1.8) near the secon-
dary resonance w, (for eI~ | AJ|< €'/?]) and aver-
age over 7, and get

dAJ  (2€3mx)*? -
dr wklillzyia_zeT

w(JIn ‘g)’

dt/dT=MAJ. (1.9)

Equations (1.9) can be derived from the Hamil-
tonian

(1.10)

where surfaces of constant # represent the secondary island contours.
The secondary resonance width A;, is related to the maximum excursion of J by A, =X, w,(maxladl)/

J,, where X, = ldw, /dJ|d,/w,. We get

V2 (2e%m,x; VY X, 2~
Aip ==375=57 i —Jk Fro(desbrs 92,
V; I,' k

(1.11)

where fk is a form factor that characterizes the system and depends on the secondary resonance pa-

rameters.
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2. Instabilities and destruction of the magnetic
surfaces.—2.1. Overlapping of resonances: It is
well confirmed® that a strong instability with ran-
domlike behavior occurs when resonances over-
lap. Overlapping of two neighboring resonances
occurs if their separation is smaller or equal to
the arithmetic average of their widths. Overlap-
ping of resonances below a given frequency v,
means that the sum of the widths of all resonanc-
es with frequencies smaller or equal to v; is
greater or equal to v; (this assumes that overlap-
ping proceeds in the order from the separatrix).
We take this criterion to define the limit of sto-
chasticity below v;; it is equivalent to

v;~ 2 Q(l;, Li,my),

V= Vi

(2.1)

and should give an underestimate of the critical
perturbation for v;. Assuming that for every
pair m, [; there is a resonance, we get from (2.1)

)

v~ 3 §[n<z,z,m)—§n<1,pz,pm)]. (2.2)

m=1/1/j 1=1

If we replace sums by integrations (2.2) becomes

1 ~f1;jm dm [Qm) - L:dy Q(y)], (2.3)
where
Qom)=(1/v,) [0, y,m)dy, (2.4)

and (I, I,m) is an interpolating function that
equals 2; at the ith resonance position for all #’s,

From (2.3) and (1.6), if €, is the limit of exter-
nal stochasticity below v;, we get

Gye M2~ 5(1;/x ) 2,78, (2.5)

where G; depends on the system and the ordering
of the resonance.

If €;, is the limit of internal stochasticity for
the v, resonance below the w, secondary reso-
nance, from (1.11) and (2.3) we get

By (i) () e

2 2m ;x; X ’ ’ (2.6)

where G, depends on the system and the ordering
of the secondary resonance w,.

Near the elliptic singularities we have shown
that X,~1.% Also, from Eq. (1.5) one can easily
show that J,~ €,y *"/% ;"1/2, If we substitute
in (2.6) we get

V2

1.3/% s/4-(e+6/2)x -3/4
174t i i .
(2m ;)

Grest?~ (2.7)

Since each island is similar to the whole struc-
ture,® we assume that G;~G,. By substituting in
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(2.7) and (2.5) we get

1/2
€ _:—8 5 p 52-8¢.
ii (2’m J_)l/z X J FRd

where 6” =2e- 0.

For the stellarator, where € was below the ex-
ternal stochasticity limit,' formula (2.8) explains
why destruction occurred near the separatrix. In
Fig. 1, we show a typical example of destruction
by internal overlapping in levitrons. We note al-
so that secondary magnetic islands appear in
Fig. 1(c).

For the levitron (6=0=6") we calculated ¢; by
directly testing the overlapping of neighboring
primary resonances and deduced €;; by using Eq.
(2.8). The results are tabulated in Table 1. (For
the levitron € is a tilt angle; in Table I it is given
in degrees.) We conclude that for v, <2 destruc-
tion is caused by internal overlapping. In Table
I quantities in parenthesis are the theoretical lim-
its for destruction. €, are the numerically mea-
sured tilts for which the resonances are com-
pletely destroyed.®

It has been established that if resonances over-
lap, a rapid destruction of their island structure
occurs.?

(1) Thus, if primary resonances overlap, a rap-
id destruction of their flux surfaces is expected.

(2) For large nonlinearity coefficients (x > €!/?),
the field lines are trapped in an effective poten-
tial well near the primary resonances forming
trapped contours in the region of each stable pri-
mary resonance. Another possible phenomenon
of destruction is the overlapping of secondary
resonances. Depending on the resonance (and the
system) destruction may occur by either or both
phenomena.

(3) The primary island width increases as €'/?,
while the secondary island width increases as
€%/1, Internal overlapping proceeds almost order-
ly from the local separatrix to the elliptic singu-
larity. Therefore, for islands that are most af-
fected by internal overlapping the observed pri-
mary width should increase at a slower rate than
€/2 due to the successive disappearance of outer
contours destroyed by secondary resonances
overlapping. This is in agreement with the nu-
merical observation by Freis ef al., where the 1
and 3 resonance widths increase as €'/ until
breakup while the 3, 2, 5, and 3 resonance widths
increase as €%/2,

(4) For small nonlinearity (x < €'/?) the field
lines may escape the resonance zone and cause
instabilities.?'”

(2.8)
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FIG. 2. Critical perturbations as functions of the
nonlinearity coefficient for levitrons (6 =0=6’). The
regions of external (internal) stochasticity are on the
right-hand side of the P (S) curves. Below the x =¢!/2
curve, the field line may escape the resonance zone.
The encircled points are numerical (Ref. 6). The
small arrows indicate the theoretical curves to which
the numerical points belong. (€ is measured in radi-
ans.)

(5) For levitrons (6 =0=05’) we plot the critical
perturbations of resonances as functions of x
(Fig. 2). These functions are determined from

formula (2.5) [formula (2.7)] for primary (secon-
dary) resonances, The arbitrary constants are
determined from the values of x, €, (€,;) given in
Table I. Obviously the regions of external (inter-
nal) stochasticity lie on the right-hand side of the
P (S) curves. The encircled points are numerical,
from Table I. We note that below x = €'/2 there is
no trapping in the sense described above.

(6) For systems which are characterized by 6”
<3, Eq. (2.8) shows that the region of internal
stochasticity extends over all of the x-€ plane
as v; approaches zero; thus flux surfaces are
always destroyed near the separatrix.

My general understanding of the subject has
been aided by examining the numerical data. It
is with pleasure that I thank Professor C. W.
Hartman and B. Freis for making these data
available to me. I also wish to thank Professor
R. H. Bragg for his encouragement. This work
was supported, in part, by the U. S. Atomic En-
ergy Commission.
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A tokamak discharge of T, ~ 1 keV is produced in the absence of conducting-wall mag-
netohydrodynamic stabilization, and then compressed in major radius by a factor of 2.3
in a static toroidal field. Measurements are reported on the resultant rise of density,

temperature, and plasma current.

The equilibrium major radius R of the tokamak
discharge is determined by the Lorentz force ex-
erted on the plasma currenty by the external ver-
tical magnetic field B,."2? An increase of B, can

be used to effect compression of the discharge
in R. For compression times short compared
with the diffusion time, the flux of the (static)
toroidal field B, is conserved within the moving
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