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We present a theoretical study of formation and destruction of magnetic surfaces in
toroidal systems. As applied to levitrons the theory agrees with the numerical results.

Perturbed magnetic surfaces in toroidal sys-
tems are equivalent to nonlinear oscillating sys-
tems with rotational transform for frequency.
Resonances that transform the unperturbed sur-
faces into a structure of magnetic islands we call
Primary resonances, and the secondary resonanc-
es transform the bound-state-like contours of a
given island into a similar structure of secondary
magnetic islands. To every magnetic island we
attach two types of stochasticity, external due to
the overlapping of primary resonances and inter-
nal due to the overlapping of secondary resonanc-
es (see Fig. 1).

Z. Nonlinear oscillating systems. —We consider
the nonlinear equations

dI/dt =(6/v)[v' I (I, 8, t)]+0(e'),
d8/dt =vj1+e[v' II(I, 8, t)]+O(e')},

where 1" and H are periodic functions of 8 and t,
and e is a small parameter. 5 and 5' are intro-
duced to allow I and II to include terms that are
not functions of v. We derive Eqs. (1.1) for levi-
trons, where 2mv(I) is the rotational transform.
(I, 8) are the action and angle variables corre-
sponding to (-,'r', 4), where r, 4, and z are the
toroidal coordinates, and t is determined from
the relation dt= dz/B, . The ma-jor radius of the
torus is normalized to 1. Equations (1.1) were
also derived for the stellarator. '

1.1. Primary resonances: We let v(I) be posi-
tive between the central magnetic axis and the
separatrix. (v(0 can be treated similarly. ) Pri-
mary resonances are obtained from secular con-
tributions and are characterized by m, v, —l,. =0
where m&, l& are the lowest positive integers sat-
isfying m, v; —l; =0. Their nonlinearity coeffi-

cients are given by

x; =
l dv(I;)/dil I;/v;. (1.2)

In the following, we assume that x»e'". This
assumption is verified for the levitron (refer to
Table I).

In the vicinity of a given resonance stable is-
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FIG. 1. (a) A closed contour of the ~ resonance.
(b) The perturbation is doubled and the contour is
heavily distorted. (c) The perturbation is doubled
again, the contour is completely destroyed, and sec
ondary magnetic islands appear. This is a typical ex-
ample of destruction by internal overlapping. The 2~
resonance after reaching its maximum flux in part (c)
is seen partially destroyed in (d). (The numerical re-
sults are taken from Ref. 6.)
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land contours may occur in the region e'"I; —
I Ml

«I;. When we expand (1.1) in this region and
average over fast oscillations, we get

TABLE I. For the levitron & is a tilt angle. The
theoretical tilts for which the resonances are com-
pletely destroyed are approximately equal to the small-
est of e, &~ . The e~ are the numerically measured
critical tilts. The x& represent the nonlinearity coeffi-
cients.

I AI I )/I, . We get

where F;(I„l„m&) is a form factor which charac-
terizes the system and depends on the resonance
pal ameters.

1.2. Island perturbation and secondary reso-
nances: We let(n, .), ~ be the set of elliptic sin-
gularities, and renormalize t to 7 =v&t. The is-
land oscillations [in terms of u,. -=b.I(u(w, )), ~,.
=(sgnp. )u~, where u, =u —n~. , and r], are of the
libration type. If we introduce the action and an-
gle variables (J', rt) corresponding to {v,, u,.), the.sla d to eq t. sbe o e

dJ/dT =0, dq/dT =u),

where ~ is a positive function of J in the region
between tl16 elliptic slllgularlty and the local sep-
aratrix. ' At the local separatrix se =O.

The island perturbations obtained from Eqs.
{1.1) perturb (1.7) as follows:

daI/dt = (2~/v;)f „,(I„u),
du/dt = p bI,

(1.3)
(1.8)

where u = t; t —m, 8, p = —m; d v(I, )/dI, and

p.2~ 2mf„(I,u) = 2., I'(I, - u/m; + v, t, t) dt.

Equations (1.3) can be derived from the Hamil-
tonian

&(~I,u) =au(&I)' (2&/v )-f,"f.,(Ii, ~)d~, (1.5)

where surfaces of constant K will represent the
island contours. The condition that EI be real de-
fines a discrete set of intervals for g variations,
thus forming m

&
families of contours separated

by a local separatrix. Each family we call an is-
land, the center of which is an elliptic singulax-
ity. Relation (1.5) has been used to plot some
magnetic island contours for the levitron. '

The primary resonance width 0; is related to
the maximum action excursion by 0; = v;x, (max

d dJ (2e'I;x;)'" f-
( )d7 u) I-'"v ' "'

dF/dT =MAJ.
(1.9)

Equations (1.9) can be derived from the Hamil-
tonian

whe~~ &(J, '0, &) is a periodic function of g and T, '
and e'= 6+e and e is the lesser of 5 and 5'.

Secondary resonances are characterized by
q„~,-p„=0, where p„q, are the lowest positive
integers satisfying q„&u~-P „=0. We let M = —q~
xdv( J)/d J$ =p„r —q„g, and f (J', $) ={A(J,—g/
q, +v~7, v), . We linearize (1.8) near the secon-
dary resonance ~, (for eI- I b Jj«e'~'I) and aver-
age over 7, and get

(1.10)

where surfaces of constant h represent the secondary island contours.
The secondary resonance width 6;~ is related to the maximum excursion of J by 6;, =X,u&~(max [AJi)/

J„, where X, = [d~„/dJI J„/~~. We get

~2 2~'I;x; '" X, '"-
«a = 3~2-' I

' ' J' FI (Ja pa qa)v; I; (1.11)

where I ~ is a form factor that characterizes the system and depends on the secondary resonance pa-
rameters.
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Q(m) =(1/v, )f,/ Q(I, y. , m)dy,

and Q(I, l, m) is an interpolating function that
equals Q& at the ith resonance position for all i's.

From (2.3) and (1.6), if e/ is the limit of exter-
nal stochasticity below v, , we get

1/2 L(I /x )1/2v (2.5)

(2.4)

where 6& depends on the system and the ordering
of the resonance.

If e,.~ is the limit of internal stochasticity for
the v,. resonance below the ~~ secondary reso-
nance, from (1.11) and (2.3) we get

&/4 y ')I1/2

2 2m, x, X„) (2.6)

where G„depends on the system and the ordering
of the secondary resonance v~.

Near the elliptic singularities we have shown
that X2-1.' Also, from Eq. (1.5) one can easily
show that J„-e,.~'"I,.v,. ' 'x& ' . If we substitute
in (2.6) we get

z/2 2 I 2/4v 5/4-(e+ &/2)x -2/4
2 jk (2 i 1/4

m&g
(2.V)

Since each island is similar to the whole struc-
ture, ' we assume that G,-- G, By substituting in

2. Instabilities and destruction of the magnetic
surfaces. —2.1. Overlapping of resonances: Et is
well confirmed' that a strong instability with ran-
domlike behavior occurs when resonances over-
lap. Overlapping of two neighboring resonances
occurs if their separation is smaller or equal to
the Rl lthmetlc RverRge of th61r widths. Ove11Rp-
ping of resonances below a given frequency v~

means that the sum of the widths of all resonanc-
es with frequencies smaller or equal to v,- is
greater or equal to v/ (this assumes that overlap-
ping proceeds in the order from the separatrix).
%6 take this criterion to define the limit of sto-
chasticity below v,.; it is equivalent to

v/- Q Q,(I„l„m)), (2.1)
Vg» V ~

and should give an underestimate of the critical
perturbation for v,-. Assuming that fox every
pair m„ l, there is a resonance, we get from (2.1)

v, - g f [Q(I, l, m)- QQ(I, pt, pm)]. (2.2)
m =&/V- l= j. P=2

If we replace sums by integrations (2.2) becomes

1-f/, mdm [Q(m) —g dy Q(y)], (2.3)

(2.7) and (2.5) we get

5/2- ~"
/' (2m )'" xJ

where 6"=2e- 5.

(2.8)

For the stellarator, where c was below the ex-
ternal stochasticity limit, ' formula (2.8) explains
why destruction occurred near the separatrix. In
Fig. 1, we show a typical example of destruction
by internal overlapping in levitrons. We note al-
so that secondary magnetic islands appear in
Fig. 1(c).

For the levitron (5 =0 = 5') we calculated e/ by
directly testing the overlapping of neighboring
primary resonances and deduced e,, by using Eq.
(2.8). The results are tabulated in Table 1. (For
the levitron e is a tilt angle; in Table I it is given
in degrees. ) We conclude that for v/ &2 destruc-
tion is caused by internal overlapping. In Table
I quRntltles 1n pR1 enthesls Rre the theoletlcal lim-
its for destruction. e, are the numerically mea-
sured tilts for which the resonances are com-
pletely destroyed. '

It has been established that if resonances over-
lap, a rapid destruction of their island structure
occurs.

(1) Thus, if primary resonances overlap, a rap-
id destruction of their flux surfaces is expected.

(2) For large nonlinearity coefficients (x» e'"),
the fieM lines are trapped in an effective poten-
tial well near the primary resonances forming
trapped contours in the region of each stable pri-
mary resonance. Another possible phenomenon
of destruction is the overlapping of secondary
resonances. Depending on the resonance (and the
system) destruction may occur by either or both
phenomena.

(3) The primary island width increases as e' ',
while the secondary island width increases as

Internal overlapping proceeds almost order-
ly from the local separatrix to the elliptic singu-
larity. Therefore, for islands that are most af-
fected by internal overlapping the observed pri-
mary width should increase at a slower rate than
e'" due to the successive disappearance of outer
contours destroyed by secondary resonances
overlapping. This is in agreement with the nu-
merical observation by Freis et al. , where the 1
and q 1esonance widths 1ncreRse Rs 6 until
breakup while the 2, 2, 2, and 3 resonance widths
increase as e'".

(4) For small nonlinearity (x - e'/') the field
lines may escape the resonance zone and cause
instabilities. "
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