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A generalization of the scalar product of the Dirac theory is proposed which together
with a recently described generalization of the Dirac equation leads to a simple descrip-
tion of a massive (~ & 0), spin-s relativistic field. This theory avoids the difficulties of
parity doubling, indefinite metric, and negative energies in the second-quantized formal-
ism, while preserving the consistency and causality of the wave equation in an external
electromagnetic field.
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where the spin matrices S are the generators of
the (2s+1)-dimensional irreducible representa-
tion of the rotation group, Di'l(R), and the K are
(2s —1)& (2s+ 1)-dimensional rectangular matri-
ces with the property that
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where o. ', y'=1, . . . , 2s —1; P, 6=1, . . . , 2s+1.
For either value of &, this equation has the fol-

lowing properties: It is form invariant under the
proper Poincare group and describes particles
with a unique spin and a unique mass without re-
quiring the use of any subsidiary conditions.

It has recently been rediscovered' that a rel-
ativistic, massive (m &0) particle with arbitrary
spin may be described by a wave equation of the
form'

(iP,"B„-m)y,(x) =0 (e =+or —),

where y, (x) is a (Gs+1)-component wave function
which transforms as cp,'(x') = S, (A)y, (x). Here
x' =Ax+a, A is an element of the homogeneous
Lorentz group, e is a space-time translation,
and S+(A) [S (A)] is the (s, 0)8 (s ——,', 2) [(O, s)
8 (2 s 2)] representation of the Lorentz group.
The p," are (6s+1)-dimensional matrices which
are generalizations of the Dirac matrices. In a
representation where P,' is diagonal, they may
be written as

There are 2(2s+1) independent components and
2s —1 dependent components which may be im-
mediately eliminated in terms of the independent
components (no secondary constraints). In the
nonrelativistic limit each equation reduces to the
satisfactory Galilei-covariant arbitrary-spin
equations, ' and for the case .s = 2 each equation
is equivalent to the Dirac equation. The Hamil-
tonian form is easily obtained. Most importantly,
however, when coupled to an external electro-
magnetic field (8& - && +ieA&) each equation re-
mains consistent and causal, thus avoiding the
external field difficulties peculiar to many high-
er -spin formulations. '

However, each of these equations by itself ad-
mits neither a parity symmetry nor a "Hermitiz-
ing" matrix which would permit the construction
of a Lagrangian in the usual manner. One rem-
edy is to simply take the direct sum of the two
equations, thus eliminating these shortcomings.
This procedure leads to further difficulties, how-
ever (even in the free case), in the form of (1) a
parity doubling of components [4(2s+1) indepen-
dent components] and, when second-quantized,
(2) wrong-sign (anti)commutation relations lead-
ing to a negative metric in the underlying Fock
space, and (3) negative-energy states which can-
not be eliminated by conventional methods. '

In the following we propose that spin-s parti-
cles be described by the undoubled formalism
but that a new scalar product be used on the solu-
tion space of Eq. (1). This scalar product in turn
leads to a second-quantized formalism which
avoids the three difficulties of the parity-doubled
case while preserving the desirable properties
of Eq. (1).

Plane-&eave solutions. —We seek solutions of
Eq. (1) with the matrices given by (2) of the form
p, (x) =&,(p)e '~ ". It is easily verified that u, (p)
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may be written as

[m+& —(e/s)S ~ p] f
a, (p, +, o)=2 [m+&+(~/s)S p]f. , o= s, . . . , s,

W&(e/s)K pf.
where we have explicitly noted the sign of the energy and the spin state. f, is an eigenstate of the spin
matrix S, and E = (P'+m')"' is always positive. As the notation indicates, the top 2(2s+1) components

are eigenstates of the Hamiltonian with eigenvalue +E.
The plane waves satisfy the relations

u', (p, +, v)u (p, +, o') = + (E/m)6 ~., tr, (p, v, o)u (p, +, o') = 0,

Q [a, (0, +, o@-'(0,+ )-&. (p, —,&&-'(P, —,o)]=(&/m)&', c(, P=I, . . . , 4s+2,

where it, (p, +, o) =I, (p, +, o)P', Expanding a general solution to (1) in terms of these plane waves, we

get

(p, (x) =Q, fd'p (2n) "'(m/E)"'[a, (p, v)u, (p, (z)e '~'"+ b,~(p, (r)v, (p, o)e'~'"j,

where u(p, +, o) = u(p-, o) and u (p, —,v)
—= v (- p, o)

Scalar product. —Suppose that a spin-s particle
is described by the (6s + 1)-component solutions
('pp(x)=—Q(x). To each Q(x) we associate a Q (x)
=(p,(x) such that a (p, o) =a, (p, o) and b (p, o)
= (-1)"b, (p, o). Now consider the object

(y, (p') =- f«„y.'(x)tl" (( '(x), (6)

where o is an arbitrary spacelike surface. It is
easily checked that this object has the following

properties: (a) It is invariant under the proper
Poincare group. (b) It is independent of o' [&&

&& {(p,t(x)p" (p'(x)) = 0 by virtue of the equations of

motion]. (c) (py p ) = (9,p) . (d) (p, Ag z+P+2)
= c((y, y, ) + p(v, q, ). (e) II pll =- (y, (p) is positive
definite for s equal to a half odd integer and pos-
itive (negative) definite for the positive (negative)

energy solutions when s equals an integer. (f) It
reduces to the usual Dirac scalar pxoduct fox

s = ~. Equation (6) therefore defines a scalar

product for the solutions of Eq. (1).
Second quantization. —We define the field den-

sities of the second-quantized theory in terms of
the integrand of the scalar product as defined
above. The free Lagrangian density may be tak-
en to be 2(x) =y,~(x)(ip„s"-m)jp(x)+H. c. and the
canonical quantization procedure may be applied.

If we take the Fock space (anti)commutation
relations to be

[a(P, o), a'(p', o')1, = &(p —p')&.. .
[&(p, &), &'(P', o')1, = 6(p —p')&.. .

and all others equal to zero, then we may define
ln the usual way an occupation-number space
which will have a positive-definite metric for
fermions as well as fox bosons.

Starting from the relations (7) and the expan-
sion (5) it may be seen that the theory is local:

[(p"(x,t), p, (x', t')], =i(H" si+&, )4( x—x') =6 s6(x —x') for t=t', o., p=1, . . . , 4s+2,

here Q ls the Hamiltonian. The fx'ee particle energy is found to be

& = (e,&m) =Z.fd'p E(P)[a'(0, o)a(p, c)+ (= I)"f (P, o)f '(p, o)],

which, when normal ordered, leads to positive-
definite energies for both bosons and fermions.

Thus one may avoid the difficulties of parity
doubling, indefinite metric, and negative ener-
gies while still maintaining locality.

Although the wave equation does not admit a
parity symmetry, parity may be introduced on

the second-quantized level according to (Pa(p, o)(P '

=a(-p, o) and(P&(p, o)g '=(-)"5(-p, o). Itleaves
the (anti)commutation relations invariant and

14"t6

commutes with H Since (Pcp(x, .t)(P = p~( —x, t),
we have (PZ(x, t)(P '=Z(-x, t), (Pj '(P '=j'( x, t), —

and (Pj (x, t )(P ' = - j (-x, t ), where j "(x)—= (p, (x)
x p"y(x)+H. c. is the free-particle current. Like-
wise, charge conjugation and time reversal may
also be introduced.

We have shown that a particular generalization
of the Dirac equation along with a generalization
of its scalar product has led to a simple descrip-
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tion of relativistic particles with any spin. This
description preserves the consistent and causal
nature of the wave equation while avoiding the
difficulties of the parity-doubled theory when sec-
ond quantized. In the present report we have at-
tempted to present only the essential features of
this approach. A more detailed and extended dis-
cussion mill appear elsewhere. '
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In a scintillation-counter experiment on the reaction n +p-M +n at 2.4 GVe/ cwe
have obtained evidence for a neutral meson denoted hi (1033) with a mass of 1032.6 + 2.3
MeV and a width of 16.2„+&'&~ MeV.

In a scintillation counter experiment at the Ar-
gonne zero-gradient synchrotron we have ob-
served neutrons and charged particles from the
reaction w +P -anything+n. The apparatus has
been described previously. ' A pion beam inci-
dent on a liquid-hydrogen target produced neu-
trons which were detected in the nearly forward
direction by an array of twenty plastic scintil-
lators. In the case of meson-plus-neutron final
states, the events correspond to forward meson
production. At a mass of 1033 MeV the range in
four-momentum transfer squared (t) between
the incident pion and the missing mass for the
accepted events is 0.00005 ' (t —t; „ I c 0.0010

(GeV/c)'. The effective mass of the particles
produced with the neutron is determined primari-
ly by the measurement of the velocity of the re-
coiling neutron. Information from the charged-
particle detector surrounding the hydrogen target
is used only in the data analysis to subdivide the
missing-mass spectrum into categories corre-
sponding to various topologies of the final state.
The charged-particle detector consisted of an
array of sixteen scintillators arranged to form a
cylinder coaxial with the beam, an array of sev-
enteen scintillators ("front array") at the down-
stream end of the cylindrical array, and two
scintillators at the tupstream end of the cylindri-


