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Th18 Structure cRD Rlso be coD81dered R8 RD oscB-
latory structure 80 phased Rs to hRve zero IDoIQent Rt

JIM cubic sites,
A. M. Stewart, Phys, Hev. 8 6, 1985 (1972).
The four Structures listed have been shown to be the

only possible configurations which satisfy a physically
reasonRMe constraint. H. A, Gersch Rnd %. C. Koehler,
J. Phys. Chem. Solids 5, 180 (1958). In their notation
the structures are (&/2, s/2), (x, u), (w/2, x/2), and (0,
0), respectively.
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The lowest T=2 state in Ti has been found in the reaction Ca(u, y) Ti at an excita-
tion energy of 9338+2 keV in 4Ti. The radiative yieId has been measured Rnd the y de-
cRy hR8 been 8tudled.

The lowest 7'= 2 state in "Ti has previously
been located by use of the reaction' ' "Ti(p,
f)44Ti. The most recent determination, ' having
the smallest assigned enex gy uncertainty, gives
an excitation energy of 9330+10keV. %e wish to
report the y decay of this state studied by using
the reaction 'cCa(o. , y)44Ti.

A 10-15-p,A beam of doubly charged helium
ions provided by the 4-MV Van de Graaff acceler-
ator at the National Research Council of Canada
was used to bombard evapox'ated tax'gets of xso-
topically enx'iched 'oCa deposited on 0.025-cm
gold backings. Details of the taxgets and experi-
mental techniques will be found in other publica-
tions." In the region 9.3-9.6 MeV of excitation
in 4~Ti, ten resonances have been observed using
a NaI(Tl) detector to detect ) rays with energies
between 6.5 and 7.5 MeV. On examination of the

) decay of these resonances using Ge(Li) detec-
tors the likely candidate for the 1'= 2 state was
found at a 'He energy of 4645 + 5 keV by compari-
son with resonances previously studied. ' A

Ge(Li) y-ray spectrum observed at 0 is shown

in Fig. 1. The two most px'ominent y xays have
energies (at 90 to the beam direction) of 7215.4
+2.0 and 2122.0+1.0 keV. Including nuclear re-
coil following y-ray emission the sum of these
two y-ray energies places the xesonance at 9338
+2 keV, in good agreement with the 'He energy
(using a Q value of 5118+10 keV') and with the
location of the T = 2 state as determined in the

(p, f) work of Rapaport et al.'

In previous o.-capture work' and in the (p, f)
experiments" no level has been observed at
2122.keV. Furthermore, both y rays show the
full Dopplex shift which in the case of the 2122-
keV transition means that the lifetime of the
emitting state is less than approximately 10 1~

sec. A state at 2122 keV with such a lifetime
would have to have spin 1 with an El enhance-
ment of ~0.8X10 'W.u. [Weisskopf unitsj or an
341 enhancement R 0.3 W.u. These would be un-
usually large for ET=0 dipole transitions in a
self -conjugate .nucleus. The conclusion is that
the y-ray cascade fx'om the resonance consists
of the 2122-keV y ray followed by the 7216-keV

y ray to the gx'ound state.
The inset in Fi.g. 1 shows that the angular dis-

tributions of both y rays are isotropic to within
the statistical erx'or. This is consistent with the
lowest T= 2 state having a J' of 0+ and with the
l = 0 angular distribution of the (p, f) reaction to
the 9330-keV level.

The state at 7216 keV is likely a T= 1 state of
spin 1, because of the expected decay properties
of T= 2 states and because the experimental val-
ue of (dy (see below) limits the 2122-keV radiation
to dipole character. A state at 6600+10 keV has
been assigned in the (p, f) work of Rapaport et al.'
as the 7'=I analog of the 2+ ground state of ~48c.

The spin-1 state is thus 616 +10 keV above the
T=1, 2' state. In "Sc there are two states near
600 keV and in particular a 1' state at 669 keV.6'
It is likely that the 7216-keV state is the analog



Vol.UMs 2g, NUMszR 21 20 NoVKMBER 1972

P'=2) 0 93384 2

7218+ 2
8800 &10

58

0 5 Ey~2422 kV

~ q'0't f
Ey7218 kV

O 3O 8'O9O~20

0+
2+

0

98&4 4

4904.2+ 0.8
~082.9+ 0.'~
0

40Ca(oc, f}44 Ti

CO:
CI

48

40
X

32
K
hl4 2¹
CO
I
X

18
O
V

8.4g I„
""~x~e0

0 400

-N22 keV

800

7Ã 8k'
l f

X)00
ih, ,

$200 $800 2000 2400 2800 3200 3800 4000
CHANNEL NUMBER

FIG. 1. Spectra of y rays at 0' for a 4He++ beam on a 10-keV-thick Ca target. The upper curve shows the spec-
trum on resonance at E(4He++) =4.646 MeV with an accumulat& charge of 0.69 C. The lower curve shows portions
of an off-resonance run for a He++ energy 20 keV below the resonance and with an accumulated charge of 0.34 C,
but with a different target-detector distance. The arrow on the lower curve near channel 550 indicates the expected
position of the 2&22-keV peak. The lowest channel corresponds to E&= & MeV. The inset on the left shows the an-
gular distribution of the primary y ray from the resonance (2122 keV) and of the most prominent secondary from
the 7216-keV level to the ground state. The inset on the right shows the proposed decay scheme of the T =2 and
T = ~ states ~

of this 1' state in 4'Sc. The other state, at 632
keV, ' is either 3 or 4 .

The strengths of transitions from the T= 2 and
T=1 states are show'n in Table I and Fig. 1. It
is assumed that unobserved transitions have zero
strength. There may be a transition from the
resonance to the first excited state but it is so
weak that it has not been possible to decide wheth-
ex' it ls resonRnt Rt the same energy Rs ttle ET=1
transitions. Consequently an upper limit on a
6T = 2, E2 transition of 1% is assigned.

The radiative yieM of the resonance, &y
= (I'„I' /I ), , has been determined from the
thick-target yield of y rays as described i.n Ref.
4, and a value for my of 0.12 eV has been ob-
tained, with an estimated uncertainty of 20%.
Since the resonance may have a proton decay
width I"~, a search for a 373.4-keV y ray from
the decay of "Sc (22/g branch, ' T,» = 3.94 h) was
made by recording the bRckgl ound spectrum froID

the target for about 1.5 half-lives following a
bombardment on resonance of about 2 half-lives.
No evidence for the y ray was found and a limit
on F~/I' of ~0.05 (2 standard deviations) can be
put on the total proton width.

An uppex' llIIllt oil I of 4,5 keV ls obtRlned fl om
the yield curve. If 1»1', then F for the T
= 2 state is 0.12 eV and the reduced transition
strength IM(M1)l' for the 2122-keV decay is about
0.6 W.u. (If this transition were E2, its enhance-
ment would be &375 W.u. ) A b,T=2, E2 transition
to the first excited state then has a reduced tran-
sition strength of a 0.004 W.u. This upper limit
is about 10 times weaker than that found for the
corresponding transition in self-conjugate nuclei
in the 8-d shell ' "

%ave functions have been calculated for the
ground and first excited states and for the T=1,
1'and T=2, 0' states of 44Ti with four valence
nucleons in the f-p shell and using the renor-
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TABLE I. Branching ratios and transition strengths.

Transition
(F.„ in keV)

Branching ratio
Expt Theory
(%) (Vo)

I y(M1)
Expt Theory
(ev) (eV)

9338 7216
1083

~ 0
7216 1904

1083~ 0

99
0.9+0.4
0.2+ 0.4
4.0+ 1.3

& 1.0
96

100

'b

3
97

0.12 0.85

b
0.17
5.78

'An (fp)
~ shell model calculation. See text

"The 1.90-MeV level does not occur in an (fp) calculation.
'Assuming I"„»I'&.

malized two-body matrix elements of Kuo and
Brown. " The first excited 0' state is not ac-
counted for by the (fp)' calculation. With these
wave functions M1 transitions between the differ-
ent isospin states have been calculated and are
shown in the table. Bare-nucleon g factors have
been used in the dipole operator. The branching
ratios of the T=1, I' state to the ground and
first excited states are qualitatively accounted
for although the nonobservation of a transition to
the first excited state may indicate considerable
dilution of the (fp)' purity of the latter state.
The 4% branch to the excited 0' state at 1.90
MeV, however, may indicate relatively little
mixing between the underlying configurations
forming the ground and 1.90-MeV states. The
absolute strength of the T=2 to T=l transition
is calculated to be too strong by a factor of 7.
A similar result was noted in "Si where the dis-
crepancy was attributed to the simplicity of the
shell-model wave functions used. "
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