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Theory of Anomalous Charge Oscillation around Resonant Scattering Impurities
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A theory of the charge-density oscillation around resonant scatterers is presented
which explains the recent experimental results on the anoxnalous charge perturbation
around transition-metal ixnpurities in Al and Cu. Its application to the Kondo effect sug-
gests a crucial test for the existence of the Kondo resonance, and shows that available
NMR data rule out the validity of the Kondo model for Al-M-transition-metal alloys,
while further experiments are proposed to answer this question in the case of Cu-based
alloys.

Friedel's classical asymptotic formula' for the
charge-density oscillation around a scattering
center within an electron gas was derived by ne-
glecting the energy dependence of the phase shifts
describing the scattering. This approximation
can be expected to be fairly good for non-transi-
tion-metal impurities in simple metal hosts, for
which the series-expansion treatment of the real-
istic smooth energy dependence of the phase
shifts results in only minor corrections affecting
the phase of the oscillation in practice at only the
first few neighboring shells around the impurity. '
In the ease of d-transition-metal impurities,
however, the existence of the virtual bound state
(vbs) nea. r the Fermi energy will result in a dras-
tically energy-dependent d-type scattering, and
a serious deviation is found both from Friedel's
simple formula and from refined theories. ' In
fact, extensive NMR studies of the charge pertur-
bation around a great variety of nonmagnetic im-
purities in Cu and Al have shown a general behav-
ior in accordance with these expectations. Name-
ly, the following has been established by NMR
measurements made on the host nuclei:

(i) The charge-density oscillation at a distance
of about 14-24 A from the impurity, as sensed
by the first-order quadrupole effect showing wipe-
out numbers of 500-2500, ean be fairly well ac-
counted for even quantitatively by Friedel's as-
ymptotic expression for all kinds of impurities
concerned. '

(ii) The charge-density oscillation at distances
below about 8 A, measured by the second-order
quadrupole effect' (wipe-out numbers between 20
and 100) and by the pure quadrupole resonance of
the nuclei in the first few neighboring shells, "
has an amplitude for d-transitional-metal impur-
ities which is strongly depressed as compared
with the values given by the Friedel formula,
while there is no such deviation for other impuri-

ties.
The primary aim of the present work was to de-

termine on more rigorous theoretical grounds
the behavior of the charge-density oscillation
around a single resonant scatterer in order to
find an explanation for the anomaly mentioned in
(ii). The results obtained compare favorably
with experimental findings. Qn the other hand,
by connecting the rate of the deviation from the
Friedel asymptotic expression to the energy
width of the resonance scattering, our results
show that the investigation of the anomalous
charge-density oscillation is a unique tool for ob-
taining direct information about the energy depen-
dence of the impurity scattering amplitude at a
given temperature, in contrast to the investiga-
tion of the transport properties at different tem-
peratures, for which case the energy and tem-
perature dependence of the scattering amplitude
are inseparably mixed together. Thus, our theo-
ry suggests an important possibility of looking
for the sharp Kondo resonance in a direct way.

The calculations utilize a method described in
more detail by Mezei and Zawadowski. ' The lo-
cal density of states for the conduction electrons
is determined using the one-particle thermody-
namic Green's function as p(r, v) = —n 'Im[G(r, r;
++i')], where r is the position vector measured
from the impurity, and G(r, r; u&) is determined
in the usual way by the free-electron Green's
function, corresponding to the effective mass m*,
and by the spin-nonf lip scattering amplitude t, (ru),
corresponding to a single angular-momentum
quantum number / (nonresonant s and P-type-
scattering being neglected throughout). In later
calculations the reasonable assumption will be
made that t, (&u) has a Lorentzian form,

1
t, ((u) =

1J'po (d —(do+Zan
'
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po being the unperturbed conduction-el. ectron den-
sity of states for one spin direction at the reso-
nance energy v, . It is assumed that the width of
the resonance is small compared to the Fermi
energy, b «eF, and that the resonance is near
the Fermi energy, &u, «c„. (For the related
problem of the less-pronounced density-of-states
anomalies expected as a result of the dependence

of the t matrix on the absolute value of the mo-
menta, see Ref. V.)

In order to calculate the total charge density
oscillation, p(r, cu) is first evaluated along the
straightforward lines suggested in Ref. 7 and
then integrated over the occupied states sub-
stracting the unperturbed uniform charge density
(r = ir 1):

(2)ap(r, T) = J, (2l+I)& 'Im(t, (v)[G, (r; ~+i5)]']f(u&)dv,

where f(e) is the Fermi function and G, is the lth angular-momentum component of the free-electron
Green's function, given by

in which k =[2m*(u&+eF)]"", P, is a constant, e.g., PI=3, and k, ~'i is a spherical Bessel function of
the third kind, ' approximated further on for x»1 according to the relation xk, f' (x) = i exp[i@ —air
+y(x)]. Here the phase correction y(x) for l =2 is given by y =3/x. Evaluating now the integral (2) us-
ing the Bethe-Sommerfeld approximation, we get

~p(r, T) = ~p(r, 0) —(2l +1)(m /2mr)'-, 'rr(kBT)'Im((d/de)[t, (&e) exp(2i[k r —-', lw + y(k r)])]] „(3)
wi. th T being the temperature and

bp(r, 0) = —(2l+1)(m*/2mr)'m '1mj t, (e) exp{2i[k r ——,'lv+y(k r)]) dry. (4)

It is one of our basic points to observe that the Friedel asymptotic formula is valid as the limiting
case of integral (4) for large enough distances r, namely, for r» $z„where the coherence length $z,
= v F/26 is defined in a way analogous to that known from the theory of superconductivity [vF = (dk~/
dr@), ' is the Fermi velocity]. This is seen by noting that for r»&~, the term exp(2ik r) oscillates
rapidly as a function of (u, as compared with the rate of change of t, (a&). Thus, according to the Rie-
mann lemma, the integral (4) vanishes except for the contribution of the sharp discontinuity corre
sponding to the upper limit of integration:

ap(r, 0) = —(2l+ 1)(m */2xr)'m ' Im((v „/2ir)t, (0) exp[2i(k Fr —-', lm)] j,
which, on introducing the phase shift 5,(0) by the equation mp, t, (0) =- sin5, (0) exp[t6, (0)], becomes iden-
tical to the familiar Friedel formula.

In the opposite limit, r «g~, the integral (4) can be evaluated only from the detailed knowledge of

t, (u&). One can, however, generally claim that as r tends to zero, exp[2ik r] will be practically inde-
pendent of co over the most important range of integration around the resonance of width A. Thus, the

integral tends to saturate as r-0 and the change of hp(r, 0) will approach, instead of Friedel's r '
law, a slower varying r law [see Eq. (4)] at a rate determined by the slowly decreasing tail of t, (&u)

far from the resonance. The range of this type of behavior is also determined by $~, as obviously r

We have calculated b p(r, 0) explicitly for arbitrary r in the case of the I orentzian resonance given

by Eq. (1) and for Hamann's approximate solution for the Kondo resonance, ' too. All further approxi-
mations that are used —namely, replacing the dispersion relation by k =kF+~/vF, extending the lower
limit of the integration in Eq. (4) to —~, and replacing y(k r) by a constant y(k Fr)—together with the

previous ones, are valid for OFT»1, and the results will be reasonably correct even for k&x=5, i.e.,
at the place of the first neighbors of the impurities, too. With these approximations the integral (4)
can be calculated exactly foi the Lorentzian resonance and numerically for the Hamann resonance,
and the result can be expressed in the form of a corrected Friedel formula as

b p(r, 0) = —[(2l+ I)/4&'] sin5, (0) [a(r)jr'] cos[2k Fr —lw + 5,(0) + 2y(k Fr) —q(r)].

The correction functions a(r) and q(r) are shown in Figs. 1 and 2. In the case of the I orentzian reso-
nance a(r) = Ice'E, (&) I and rl(r) = argue�'E, (a)] with z = (I + tA)r/g ~, and A. = to,/6, where E,(z) is the so-
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FIG. 1. Amplitude of the charge-density oscillation
re1atlve to that given by Friedel 8 expression as a
function of the distance x/)IA for Loreutzian resonances
with various resonance energies D)0/4 (solid lines) and
for the TK=A/Q Hamanu solution (dashed line). For
comparison, the dotted line shows the ~ 2 law, i.e.,
(2(2) ~2".
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FIG. 2. Phase of the charge-density oscillation rela-
tive to that given by Friedel's expression as a function
of the distance 2/)A for Lorentziau resonances with
various resonance energies ~0/& (solid lines) and for
the TK=b/I2a Hamann solution (dashed line). The inset
showa the change of the wave number of the osci11ation.

called exponential integral function'; note that a(x) and ti(r) are even and odd functions of A, respec-
tively, i.e., for u&0=0, q(r) vanishes. Because of the x dependence of Ti(r), the wave number of the os-
cillation deviates from the familiar value @Fr, as shown in the inset of Fig. 2. It is seen that in both
cases the qualitative behavior of a(v) corresponds to our previous general conclusions, demonstrating
a fair independence of the particular shape of the resonance, as expected,

Furthermore, evaluating Eq. (3) for the I.orentzian resonance concerned, we get for the tempera-
ture dependence of the charge-density oscillation directly that

nn(s, 2')- (Dn)s= sI, sinI (D) —, s* I+, —,) sns[22ss-Is+it, (D)+Iis{kss)]
2l+1 . 1 w'(kBT)'

+ —,', s(n[22 ss - Is+ I,(D) +Irp(ass)] I.
6o)()

62+ rO&2

If we replace $~ by zero, this expression reduc-
es to that obtained by Adawi, "which implies a
temperature dependence in phase with the Frie-
del oscillation. Apart from quantitative correc-
tions, the important new feature of our result is
that ln the case of resonant scattering the tem-
perature dependence includes out-of-phase con-
tributions as well, due to the appearance of the
phase correction Ti(r) and of the last term in the
right-hand side of Eq. (5).

Now let us turn to a discussion of these results.
It is immediately clear from Fig. I that the anom-
alous behavior of the cha, rge oscillation around
transition-metal impurities that was outlined in
(i) and {ii) can be explained by the present theory
supposing that $~ is 5-10 AI i.e., 6 = 1-0.5 eVI
in convincing agreement with present estimates
of the width of the vbs in Cu and Al. A detailed
comparison of our theory with experimental data,

however, will be given elsewhere. "
Here we focus attention on the implication of

the present analysis for the Kondo effect. By de-
termining an estimate of $ ~ from NMR investiga-
tion of the charge-density oscillation at a given
temperature, one can deduce a value for the
width of the resonant impurity scattering con-
cerned. This offers a direct test of the basic re-
sult of the Kondo theories, i.e., the appearance
of a resonant scattering with a width of about
ABT K at temperatures below the Kondo temper-
ature T K,

"a concept that has been widely used
to interpret experimental data, ." Consider, for
example, AlMn: It is known that the temperature
dependence of the macroscopic properties of this
alloy can be explained by a Kondo-type resonance
with a width corresponding to about 500'K." On
the other hand, from the first-order NMR wipe-
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out number n =1650 at T =O'K, "one finds at the
wipe-out distance of about 20 A a ch'arge-density
oscillation amplitude which amounts to 80% of the
value calculated" using Friedel's asymptotic ex-
pression with the resonance at the Fermi energy,
i.e., 5,(0) = n/2, corresponding to the unitarity
limit. (This large value of the:first-order quad-

rupole wipe-out number can be understood only
lf d-w'Rve scRtterlng domlQRte8 over the s- and

p-type scattering, in accordance with our previ-
ous assumption. ) Looking now at Fig. 1, we see
that in this case $~ cannot be greater than approx-
imately half of the above radius, i.e., $z «10 A,
which means that b, ~0.5 eV, a value close to the
width of the vbs in Al-based alloys of about 0.6
eV,"and Rn order of magnitude larger than k~TK.
This fact rules out the existence of a single nar-
row Kondo resonance, and so we are forced to
assume that in the temperature dependence of the
different macroscopic properties and of the charge
density oscillation, "the temperature dependence
of the scattering amplitude t, (0) plays a major
role, and/or that t, (v) has a much more complex
structure than that corresponding to a single-
peaked conventional resonance, in which case
our considerations have to be applied with partic-
ular care."

The analysis shows the fundamental importance
of determining the charge-density oscillation in
the nonmagnetic regime (below T K) of "typical"
Kondo systems. Thus, we propose first of all
the experimental determination of the amplitude
of the charge density oscillation in the T -O'K
limit, as measured by the first-order NMB quad-

rupole effect, in the CuFe and CARGO alloy sys-
tems. An analysis of the results along the pres-

ent lines would provide a crucial test of the exis-
tence of a Kondo-type resonance in these alloys.

The authors are indebted to G. Berthier and
M. Minier for making their data available before
publication, and to G. Hargitai and A. Zawadow-
ski for valuable discussions.
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The magnetic structures of metallic samarium have been determined from neutron-dif-
fraction data on a single crystal of Sm. Anomalies in a number of physical properties
of this metal at 106 and 18.8'K are associated with ordering of the moments on the hexa-
gonal and cubic sites, respectively. The unusual form factor expected for a 4f 5 configu-
ration has been observed, Striking evidence for important conduction-electron polariza-
tion effects has been found.

Anomalies in the electrical resistivity' and spe-
cific heat ' of samarium have been detected near
106 and 14'K, which are suggestive of magnetic-
orderlng tl RQsltlons Rt these temperatures, Re-

cently, single- crystal magnetic-susceptibility
data have been reported, ' which are explicable if
Sm at 4.2'K is a c-axis antiferromagnet. Up until
nowt Qeutl on-diff ractlon studies of this metal


