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The behRvlor of the plRsmR-curleDt penetration 1D R tololdRl device hRS been investi-
gated for a wide range of plasma. density (10~~& n & 10'3 cm 3). The observed rapid pen-
etration cannot be attributed to the enhancement of plasma resistivity. A possible ex-
planation is proposed in terms of electrostatic instabilities driven by electron velocity
grRd1ents.

We report an experimental observation of anom-
alous skin effects in a toroidal system, ' a sche-
matic of which is shown in Fig. 1. An argon plas-
ma with an average density 10"~n ~10" cm ' is
initially formed with the help of rf breakdown and

preheating. The argon neutral pressure is typi-
cally 0.3 mTorr. A betatron-type electric field
E (& 100 V/cm) is then applied to the plasma along
a toroidal magnetic field 8 (& 2 kG). The maxi-
mum current induced in the plasma is about 20
kA at the density e =10"cm '. The electron tem-
perature, measured by an orbit analyzer probe'
and a diamagnetic probe, reaches several keV
within 1 p.sec starting from an initial temperature
'of the order of 10 eV. Poloidal magnetic fields
produced by the plasma current were measured.
using small (5 mm diam) movable magnetic
probes; one measures vertical magnetic fields
and the other measures horizontal fields. It has
been found that there is no significant difference
in behavior between these two fields. Measure-
ments were performed in the early stages of the
current pulses, namely, up to 300 nsec, where
skin effects, if any, should be most pronounced
since the plasma resistivity is exoected tA»
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FIG. 1. Schematic of the device and major diagnostic
tools. One magnetic probe measures vertical magnetic
fields and the other measures horizontal fields.

small.
The behavior of the electron acceleration by the

electric field depends on the plasma density. At
densities in the range 10 '- 10"cm ', the elec-
trons, as previously reported, ' are freely accel-
erated up to about 100 nsec, when the electron
drift velocity overtakes the electron thermal ve-
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proposed by Breizman, Mirnov, and Ryutov' and

Robson, who assumed that the electron drift ve-
locity is limited by the ion-acoustic velocity
(T, /M)'~'. This, however, cannot be applied
here either because the electron drift velocity ex-
ceeds the ion-acoustic velocity.

Recently, Hirose and Alexeffv and Horton' have

suggested the possibility that steep electron drift-
velocity gradients across an external magnetic
field, which are associated with skin effects, can
drive fast-growing electrostatic instabilities with

growth rates y &~~, . It is expected that these in-
stabilities tend to reduce the velocity gradient and

thus help the plasma current penetrate into the
plasma core. The skin depth enhanced by the in-
stabilities may be deduced from the instability
criterion. " The minimum velocity gradient re-
quired for the instability is given by

4&~e ~e 1 ~~a
gex c

Thus, after the instability develops, the classi-
cal, collisionless skin depth c/~~, can be en-
hanced by a factor

&(c/P. )(1+~,.'/~„') "'.
If we substitute our experimental values for which

electron free acceleration is observed (e s10"
cm ', P, ~10' cm/sec, 8=1.5 kG), the skin depth

actually becomes larger than the plasma radius
(~ 15 cm compared with 2.5 cm), and thus the
skin depth should not be detectable, consistent
with the experimentally observed initial free
streaming of essentiaOy all the electrons in the

plasma column.
At higher plasma densities (n =10"cm '), we

shouM cons1der the sk1n tlnle 1nstead of the skin

depth since no electron free acceleration is ob-
served. (We cannot exclude the possibility of

free acceleration during an initial interval of
-20 nsec when the small current is not clearly
discernible because of noise. ) As mentioned

earlier, the classical, collisional penetration
time i.s much longer than the observed penetra-
tion time. This suggests that the electron colli-
sions responsible for the plasma resistivity do

not play a ma]or role for the current penetration
even though at higher densities the collision fre-
quency is not negligible. Instead, we again con-
sider the influence of velocity-gradient instabil-
ities which can greatly enhance the effective elec-
tron viscosity. ' Assuming that the kinematic vis-
cosity" p, ~(effective mean free path)'/(collision
time) -=(radial correlation length)'/(correlation
time) is of the order of, or greater than, ~~,L'

(L = characteristic length of the velocity gradient),
we can estimate the current penetration time
froQl

+~pe ft L /c ~ps~

where the factor ~ comes from the cyhndrlcal
geometry chosen for the analysis. (The ion plas-
ma frequency is the minimum growth rate of the
velocity-gradient instabilities. ) If we choose L
=8, we get 7 = 40 nsec for our experimental con-
ditions, which is in reasonable agreement with

the observed penetration time.
Anomalous skin effects not due to an enhance-

ment of plasma resistivity are favorable in terms
of the thermal energy transport. The instabilities
driven by a velocity gradient in general tend only
to redistribute the spatial current profile and are
not expected. to enhance the resistivity greatly.

We believe that our experimental results sug-
gest that such a process may be occurring. The
extreme case (Fig. 2), in which the plasma re-
sistivity is practically zero, clearly indicates
that the anomalous skin effect cannot be explained
by the resistivity enhancement.
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