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Nonlinear Evolution of the Rayleigh-Taylor Instability of a Thin Layer
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An exact, closed-form, nonlinear solution is obtained for the Bayleigh-Taylor instabil-
ity of a thin Quid layer. If the layer evolves from a small sinusoidal perturbation, its
subsequent shape is in the form of a cycloid. The solution is good up to a time t* after
which adjacent segments of the layer begin to collide with each other. A qualitative dis-
cussion of the layer dynamics for t &t* is given.

In this note we investigate the Rayleigh- Taylor
instability of a thin fluid layer which is supported
against gravity or inertial forces by the pressure
of a massless fluid (e.g. , a magnetic field). We
shall idealize the layer by making the assumption
that it is of infinitesima1. thickness. ' It turns out
that the assumption of zero thickness wiH allow
us to obtain a fairly complete description of the
nonlinear evolution of the layer.

The present analysis was motivated by a pro-
posed controlled-thermonuclear- fusion experi-
ment (LINUS) to be conducted at the Naval Re-
search Laboratory. ' In this device a cylindrical
conducting she11 surrounds a 8-pinch plasma and
is accelerated inward (imploded), thereby com-
pressing the enclosed magnetic field and plasma.
The great advantage of this scheme is that very
large magnetic fields (several megagauss) and
hence large plasma densities are attainable. This
in turn makes possible a fusion device which can
be much shorter than would be necessary for a
fusion-power-producing 8 pinch. Whether the
Rayleigh- Taylor instability of the imploding shell
can play a destructive role in this application de-
pends on the amount of time that it is operative
and on its nonlinear development.

We note that, while previous theoretical and
numerical work ' has concentrated on the non-

linear problem of the Rayleigh- Taylor instability
of an interface separating two semi-infinite fluids,
the problem of the nonlinear evolution of a layer
appears to have received very little attention.

We consider a layer of fluid which, in equilib-
rium, is supported against gravity, —gy", by a
massless fluid of pressure p, in y &0, with a sec-
ond massless fluid of pressure p~ =p, —oog in
y &0, where 0, is the surface mass density of the
layer. For simplicity, the pressure difference
p, —p, is assumed to be independent of time as
the layer evolves. , Extensions of the present cal-
culation to include time variation of the pressure
difference and application of the method to a radi-
ally imploding cylindrical layer are given else-
where. "

Let y = 0, x = g, be the position of a point on the
layer when it is in equilibrium. Assume that this
equilibrium is perturbed at I;= 0 and then left to
evolve. The new position of this point at time t
is denoted by r(g„ t) =x(g„ t)xo+y(g„ t)yo (we re-
strict our analysis to two dimensions). Now con-
sider another point whose equilibrium position is
y = 0, x = g, + d)0. At time t this point will be lo-
cated at r+(&r/&$, ) dg, . We wish to find the equa-
tion of motion for this surface element which was
originally located in the interval between $0 and

g, +d$,. The mass of this element is clearly time
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independent and is given by dm = o, dgo. The force
on the element is

dF = —gdmyo —(p, -p, ) d), (Br/B&,) XS„

special case of (4) and (5):

x = ), -A, exp[t(kg}'~']coskg„

y =A, exp[t(kg)"']sink(, .
(7)

(8)
where the first term in (1) is the gravitational
force, and the second term is the pressure force,
whose magnitude is just the pressure difference
multiplied by the length of the element and whose
direction is normal to the element (hence the
cross product with z,). Thus since dm B'r/Bt'
= dF and p~ —p, = &Og, we obtain

B'x/B&' = —g By/Bh. ,

B2y/Bf2 = g Bx/Bg —g,

(2)

(3)

x(go, t) = $o —Q $„(k, t) cos(k $0+ 0„),
ps0

y(~„ f) = g g, (k, t) sin(kg, + t), ),

(4)

(5)

where the $„„'(k,t) satisfy

with initial conditions x, y, Bx/Bf, and By/Bt giv-
en at t=0. The remarkable thing about (2} and (3}
is that they are linear. We immediately see that
x = $„y=0 is a solution, and indeed this is just
the unperturbed equilibrium. The most general
solution of (2) and (3) is

If we assume that kA, exp[t(kg)' ']«1, then the
second term in (7) can be neglected and (8) be-
comes y =A, exp[t(kg}'~')] sinkx, which is sinu-
soidal in space and corresponds to the linear
solution obtained by Taylor. " For arbitrary
amplitudes, Eqs. (7) and (8) are actually the
parametric representation of a cycloid (i.e., the
path followed by a point on the surface of a rolling
wheel). As shown in Fig. 1, at t=0 the curve is
approximately sinusoidal; at t = t, the sinusoidal
shape has become distorted so that the maxima
become broad and the minima become sharp; at
t= t* a cusp develops in the curve; and at t = t,
the curve becomes multivalued. For t ~ t* the
solution (7) and (8) becomes unphysical since por-
tions of the layer (e.g. , points a and b in Fig. 1)
must pass through each other in order to reach
the state t= t, shown in Fig. 2. This indicates
that at t=t~ adjacent sections of the layer on
either side of the cusp begin to collide with each
other. The downward displacement of the cusp
is y = —1/k so that from (8) we obtain

+kg), „'=0 (6) t*=(kg) "'ln(kA, ) '

and 0 labels the four linearly independent solu-
tions of Eq. (6). Assuming $„'-$, '-exp(- &et)
we obtain &u'=k'g which corresponds to two oscil-
latory roots, &a& = + (kg) ' ', one unstable root, &u

=i(kg)'~', and one damped root, &u= —i(kg)' '.
These four roots agree with the linear analysis
of Taylor" for a layer of finite thickness. We
emphasize, however, that the solution (4) and (5)
is nonlinear" in the Eulerian sense since a given
k component does not correspond to a perturba-
tion which is sinusoidal in x, y space. In order to
consider the solution in more detail we look at a

(a) u;

The thin-layer approximation would not be ex-
pected to apply, even in the early phase of the
evolution, unless the wavelength of the perturba-
tion were large compared to the layer thickness.
We note that although short wavelengths have the
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FIG. 1. Layer in the form of a cycloid.
FIG. 2. (a) Colliding fluid layers; (b) the same in

the frame of the intersection point.
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FIG. 4. Evolution of the layer for t &t* +hen the
situation in Fig, 8(a} applies.

{b3

FIG. 3. Flow of the type studied in (a) Ref. 14 and
(h} Ref. 15.

largest growth rates, it has been shown that long-
wavelength components tend to dominate at later
time, ' This provides a partial justification of our
approach even in the case in which the initial per-
turbation cootains both long- and short-wave-
length components.

We now consider the nonlinear evolution of the
layer for t&t". Since Eqs. (7) and (8) imply that
adjacent portions of the layer collide with each
other for t& t*, the question arises of what hap-
pens to two identical colliding slabs of fluid. Fig-
ure 2(a) illustrates the basic problem. In Fig.
2(a), U, is the velocity of the two fluid slabs and

U,. is the velocity of the intersection point. Trans-
forming to a frame moving with the intersection
point we obtain the situation in Fig. 2(b). The
problem in Fig. 2(b) has already been considered
in some detail for the case of zero gravity where
U and U. are constant ~n tame. While these
simplifying assumptions do not hold in our case,
the solution of the simplified problem provides
considerably insight. Basically two types of flow
are possible. "'" The first type, pictured in Fig.
3(a), was found by Birkhoff, MacDougall, and
Pugh'4 who obtained a complete solution of the

problem for the case of an incompressible fluid.
The second type of flow which can occur has been
discussed by%alsh, Shreffler, and Willig" and
is pictured in Fig. 3(b). In this solution, an at-
tached shock forms at the point of joining of the
two fluM streams, and onnly one emerging stream
results. The solution of Walsh, Shreffler, and
Willig is only possible when U is supersonic and
the angle 8 [defined in Fig. 2(b) j is sufficiently
small, 9&0,. Otherwise the solution is of the
type in Fig. 3(a). The critical angle 8, depends
in a complicated way on the equation of state, the
fluid density, and U." In the case where Fig. 3(a)
applies, the evolution of the Rayleigh- Taylor in-
stability for t& t* will be as shown in Fig. 4:
layer is in the form of a cycloid up to the point
where adjacent sections of the layer collide; at
this point the Quid from the previously colliding
sections merge to form a downward-extending
vertical layer which falls under the influence of
gravity, and an upward jet of fluid. Under the in-
fluence of gravity, this upward jet splays out and
falls back downward (like a fountain), splashing
into the cycloidal segment. After the time when
the splashing takes place it ls difficult to predict
the layer evolution. In the case where Fig. 3(b)
applies there is no upward jet.
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The behRvlor of the plRsmR-curleDt penetration 1D R tololdRl device hRS been investi-
gated for a wide range of plasma. density (10~~& n & 10'3 cm 3). The observed rapid pen-
etration cannot be attributed to the enhancement of plasma resistivity. A possible ex-
planation is proposed in terms of electrostatic instabilities driven by electron velocity
grRd1ents.

We report an experimental observation of anom-
alous skin effects in a toroidal system, ' a sche-
matic of which is shown in Fig. 1. An argon plas-
ma with an average density 10"~n ~10" cm ' is
initially formed with the help of rf breakdown and

preheating. The argon neutral pressure is typi-
cally 0.3 mTorr. A betatron-type electric field
E (& 100 V/cm) is then applied to the plasma along
a toroidal magnetic field 8 (& 2 kG). The maxi-
mum current induced in the plasma is about 20
kA at the density e =10"cm '. The electron tem-
perature, measured by an orbit analyzer probe'
and a diamagnetic probe, reaches several keV
within 1 p.sec starting from an initial temperature
'of the order of 10 eV. Poloidal magnetic fields
produced by the plasma current were measured.
using small (5 mm diam) movable magnetic
probes; one measures vertical magnetic fields
and the other measures horizontal fields. It has
been found that there is no significant difference
in behavior between these two fields. Measure-
ments were performed in the early stages of the
current pulses, namely, up to 300 nsec, where
skin effects, if any, should be most pronounced
since the plasma resistivity is exoected tA»
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FIG. 1. Schematic of the device and major diagnostic
tools. One magnetic probe measures vertical magnetic
fields and the other measures horizontal fields.

small.
The behavior of the electron acceleration by the

electric field depends on the plasma density. At
densities in the range 10 '- 10"cm ', the elec-
trons, as previously reported, ' are freely accel-
erated up to about 100 nsec, when the electron
drift velocity overtakes the electron thermal ve-


