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We define free, covariant Euclidean Bose and Fermi fields and establish their relation
with the corresponding relativistic free fields. Using this correspondence we prove a
Feynman-Kac formula for boson-fermion models.

Euclidean boson fields play a fundamental role
in the construction of Lorentz-covariant fields.
Their importance was stressed by Schwinger!
and Symanzik,? whose ideas led to an abstract
formulation by Nelson.® Here we introduce free
Euclidean fermion fields and the corresponding
path-space formula for exp(—¢H) and for Eucli-
dean Green’s functions.

Euclidean fermion fields involve complications
absent for bosons.

(I) The Euclidean boson field ®(x) agrees at
time zero with the Lorentz boson field, ®(0,%)
= @(X). The Euclidean boson Fock space §5 then
contains the Lorentz boson Fock space Fpg.%*
This does not hold for fermions, i.e., Fr{ &,
and sharp-time Euclidean Fermi fields create
non-normalizable wave functions.

(IT) Euclidean boson and fermion fields trans-
form under the analytic continuation of the repre-
sentation of the inhomogeneous Lorentz group to
the inhomogeneous rotation group ISO, (Euclidean
group). However, it is necessary to introduce
two independent, anticommuting Euclidean fields
¥ and ¥2 corresponding to the Lorentz fields ¥
and §. These extra degrees of freedom avoid a
contradiction between Euclidean covariance of
the fields ¢* and ¥?, the canonical anticommuta-
tion relations, and the form of the two-point func-
tion, which has to be equal to the relativistic

Feynman propagator at imaginary times.

(III) In contradistinction to the Euclidean boson
action, the Euclidean action V involving fermions
is non-Hermitian. The adjoint transformation V
-~ V* is related to Euclidean time inversion (see
below). This non-Hermitian property causes no
difficulty in the physical interpretation.

(IV) In spite of these differences, as for Eucli-
dean boson fields, the action density for charge-
conserving theories is Abelian. Thus our Feyn-
man-Kac formula for fermion-boson systems
gives a mathematically precise history integral
for both fermions and bosons and relates the
history (path-space) integral to a Hamiltonian.

In a separate publication,® a set of axioms for
Euclidean Green’s functions is given, and the
axiomatic relation to Lorentz field theory is de-
rived. Also a detailed version of the material
presented here will be given elsewhere.® For
notational conventions in the relativistic case,
we mostly follow those of Bjorken and Drell.”
We write x for a real four-vector (x°,2,x%,4%)
= (x%,%) and xy for the Euclidean inner product

3
Extyz =x0y0+i,§.

i=0

On Euclidean Fock space §=8,®8 5 we define
two distinct Euclidean Fermi fields ¥,'(x) and
¥ 2(x), a=1,...,4, by

¥ Hx) = (27)" 2ji1 Je *m2 +p?) M2 [D(p j)*V () +B(=p U (p) | dp,

Vo) = (2n) 2 5 fe om0 D)V () + Bp, VD (0)] .

They satisfy the anticommutation relations

{¥, /()% ()} =0,

{\I’ai(x),\l’ﬁj(y)*} - 25“50“3(271)-4 e-ip(x- ”)(p2+m 2)‘1/2d“p.
f

The two-point function is

<‘Ilot1 (x)\I’ﬂz(y» = <TJ)0L(X).$B (y» = iSFOLB(i(xO - yO)"}E - —)7) )
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where § and $ are the relativistic fields at imaginary time,

Do, B) = exp(— x°Ho)po(X) exp(x°H,), §4(x°, %)= exp(~ x°Ho)P oK) exp(x°H,).
We also define the Euclidean Bose field ®(x) by

&(x) = (27)"2 [e™"** (k2 +m, )"V 2[A (k)* +A (= k)| d*k.
Then [&(x),®(y)]=0 and

(@(x)2(y)) = TP (x)P(y))y = iB p(ilxo = 35), X =),

where §(x°, X) = exp(— x°H,)¢ (%) exp(x°H,).

The Euclidean vacuum Q;E§ is cyclic for the smeared fields \Ilai( f),®(g). There is a unitary repre-
sentation U 1(a) of the translation group and a unitary representation U,(A) of the universal covering
group SU(2)®SU(2) of the four-dimensional rotation group SO,, such that with U(A,a)=U,(A)U,(a), for

all A € SU(2)®8U(2), aER?,

U(A,a)ﬂE =‘QE ’ U(A,a)llal(x)U(A’a)'l =EBRaB(A-1)‘I'Bl(T(A)(x +a)) ’

UA,a)¥,2(x)UA,a)" =3 g% (r(A)(x +a)) R ,A),

Here A - 7(A) is the homomorphism of SU(2)
®8SU(2) onto SO, and A -~ R(A) is a four-dimension-
al unitary representation of SU(2)®SU(2).

. As was explained in the introduction, the Lo-
rentz boson Fock space Fp is a subspace of the
Euclidean space 8. This does not hold for fer-
mions, and the relation between &5 and &5 is
more complicated.

In & we define the subspace &,, the subspace
of “positive times,” to be the closed linear hull
of the set of vectors of the form

) 4 L
X=: _III‘I’ail(fi)jHI‘I’ajz(gj)lIII ®(%,):Q g, (1)
where Wick ordering is defined as usual and the
test functions f;, g;, and &, are such that they
vanish for x°<0,

Now we define the mapping W, from a dense set
of vectors in &, onto a dense set of vectors in the
Lorentz Fock space & to be the linear extension
of

or

] ®
WoX = : T, (/) L $s () T $(h)):22,
i=1 i=1 i=1
where X is defined by (1) and Q is the vacuum

vector in F. W, is a bounded operator. For a _
proof we define a unitary involution © on & such

that ©Q; =9y and
O¥, (x)0™1 =35 ¥ 5% H(0x) ¥ o8>

where 0x= (= x,, X). Then for all vectors X,Y of
the form (1), we find that

(WoX, WoY)_ = (0X, Y), . (2)

Equation (2) shows that W, is a bounded operator
" with norm smaller than 1. Therefore, it can be
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U@, a)@(x)U(A,a)t =¥ rA)x+a)).

extended to a bounded map W from &, into &, and
Eq. (2) holds for all X, YE &, if we replace W, by
W. We also find that for all X€ §,, t=>0,

WU((£,0))X = exp(~ tHWX, ®3)
where U 1((t,ﬁ)) is the unitary time translation
group in §. By formulas similar to (3) we can
also establish the relation between the Euclidean
fields and the Lorentz fields.

To establish the Feynman-Kac formula we con-
sider a system with Yukawa interaction and poly-
nomial boson self-interaction. Let P be a real
polynomial of even degree with positive leading
coefficient. In § we define the following opera-
tors:

e (V)= fotdx° fvdsx P, (x):,

Q. .(t,V)= f;dx" fv BxY 0 LT, )2, (x).

The index k denotes an ultraviolet cutoff; V is a
finite volume in ®3.

Note that @, (Z, V) is not symmetric, but using
the involution © introduced above we have

QX V)==0Q,(-t, VIO

Similarly, we define in the relativistic Fock
space &

P (V)= [ &x:P(p,&):,
QK(V)=,[V dsxz;a:ika(-}a¢xa(i):‘px(§)-

Now let XE 8, be a finite linear combination
of vectors of the form (1). Under the above as-
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sumptions, for 0 <f <o,
Wexp|{- [®,(t, V) +Q, (t,V)]}U,(t,0N X
= exp{ - {[H, +P (V) +Q (V)] }WX.

This is the Feynman-Kac formula. We remark
that special care is needed for the definition of
the operator exp[-Q, (¢, V)| because the exponent
Q. (£,V) is not self-adjoint.

We are grateful to Professor A. Jaffe for many
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ment.
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We have measured the asymmetry parameter 2= (o —0,)/(oy + 01) for the photoproduc-
tion of ¢ mesons with photons polarized parallel and perpendicular to the plane of decay
for the reaction yp—~¢@p—K*K p. We find £=0.985+0.12 at a photon energy of 8.14 GeV
and ltl of 0.2 (GeV/c)?, consistent with pure diffraction production, or pure natural-

parity Regge exchange.

As first pointed out by Freund and more recent-
ly by Barger and Cline,' ¢p elastic scattering is
expected to proceed purely by Pomeranchukon
exchange, and therefore photoproduction of ¢
mesons should be purely diffractive. If this is
correct, polarized photons should produce ¢’s
with polarizations 100% correlated with the in-
cident polarization. Specifically, the asymmetry
Z, defined in terms of the yield of ¢ mesons o,
produced with a polarization vector parallel to
the incident photon polarization and the yield o,
normal to the incident photon polarization vector,
should be unity?:

z :(O'“"'O'J_)/(O'||+UJ_)=1.

In the present experiment, the detection plane
of the K pairs from the decay ¢ ~K*K~ is fixed
perpendicular to the production plane, and the

photon beam has a polarization which may be
oriented perpendicular or parallel to the produc-
tion plane. The measured asymmetry A is de-
fined as A = (N, - N,)/(N,+N,), where N, (N,)

is the coincidence counting rate, corrected for
accidentals, with the photon beam polarization
vector normal (parallel) to the production plane.
The quantity Z is related to the measured asym-
metry A by

z=A/IP,I(1-¢),

where P, is the magnitude of the photon beam
polarization and € is a small correction factor,
about 6%, due to the finite angular acceptance of
the K-pair spectrometer. In terms of density-
matrix elements,

Z=(pyy" +py 1)/ (p1,° +Py 1Y)
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