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Feynman-Kac Formula for Euclidean Fermi and Bose Fields
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We define free, covariant Euclidean Bose and Fermi fields and establish their relation
with the corresponding relativistic free fields. Using this correspondence we prove a
Feynman-Kac formula for boson-fermion models.

Euclidean boson fields play a fundamental role
in the construction of Lorentz-covariant fields.
Their importance was stressed by Schwinger'
and Symanzik, ' whose ideas led to an abstract
formulation by Nelson. 3 Here we introduce free
Euclidean fermion fields and the corresponding
path-space formula for exp(- tH) and for Eucli-
dean Green's functions.

Euclidean fermion fields involve complications
absent for bosons.

(I) The Euclidean boson field 4(x) agrees at
time zero with the Lorentz boson field, 4(o,x)
= p(x). The Euclidean boson Fock space Ss then
contains the Lorentz boson Fock space 5~. ~

This does not hold for fermions, i.e., F~gh~,
and sharp-time Euclidean Fermi fields create
non-normalizable wave functions.

(II) Euclidean boson and fermion fields trans-
form under the analytic continuation of the repre-
sentation of the inhomogeneous Lorentz group to
the inhomogeneous rotation group ISO, (Euclidean
group). However, it is necessary to introduce
two independent, anticommuting Euclidean fields
4' and 4' corresponding to the Lorentz fields g
and g. These extra degrees of freedom avoid a
contradiction between Euclidean covariance of
the fields P' and $', the canonical anticommuta-
tion relations, and the form of the two-point func-
tion, which has to be equal to the relativistic

Feynman propagator at imaginary times.
(III) In contradistinction to the Euclidean boson

action, the Euclidean action U involving fermions
is non-Hermitian. The adjoint transformation U
—V* is related to Euclidean time inversion (see
below). This non-Hermitian property causes no

difficulty in the physical interpretation.
(IV) In spite of these differences, as for Eucli-

dean boson fields, the action density for charge-
conserving theories is Abelian. Thus our Feyn-
man-Kac formula for fermion-boson systems
gives a mathematically precise history integral
for both fermions and bosons and relates the
history (path-space) integral to a Hamiltonian.

In a separate publication, ' a set of axioms for
Euclidean Green's functions is given, and the
axiomatic relation to Lorentz field theory is de-
rived. Also a detailed version of the material
presented here will be given elsewhere. ' For
notational conventions in the relativistic case,
we mostly follow those of Bjorken and Drell. '
We write x for a real four-vector (xo,x,x,x )
= (x,x) and xy for the Euclidean inner product

3

Q x'y' = x'y'+x. y.

On Euclidean Pock space h = hz8e we define
two distinct Euclidean Fermi fields 4'„'(x) and
4 '(x), o. =1,..., 4, by

e„'(x) = (2v) ' p Je-*'"(~'+p') '"[D(p,j)+V„'(p) +B(-p,j)U„'(p) J d4p,

4'„(x)=(2v) sp Je '~"(~ +p ) ' [D(-pj)V„'(p) eB(p,j)*U„'(p)]dcp.

They satisfy the anticommutation relations

(e„'(x),e, (yg =0,

f4' '(x)p&'(y)*) =26;;5„&(2m) 4Je '~ " ' (p3+m ) dp.

The two-point function is

P„'(x)e,'(y)) = (T(„(x)y,(y)) = t S„„,(t(x'- y'), x —y),
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where |11 and P are the relativistic fields at imaginary time,

g„(x', x) = exp(- x'a, )g (x) exp(x'a, ), f„(x',x) = exp(- x'a, )g (x) exp(x'a, ).
We also define the Euclidean Bose field 4(x) by

e(x) = (2~)-'fe-'" (n'+m, ')-'"P, (n)*+a(- n)]d'I .
Then [4(x),4(y)] = 0 and

&4(x)@(y)&= &&q (x)q"(y)) = ~F(t(xo —yo), x —y},
where P(x', x) = exp(- x ao)y(x) exp(x'a„).

The Euclidean vacuum Qz&8 is cyclic for the smeared fields 4'~'(f),4(g). There is a unitary repre-
sentation U, (a) of the translation group and a unitary representation U,(4) of the universal covering
group SU(2)SU(2) of the four-dimensional rotation group 80~, such that with Ir(A, a) =Un(A)U, (a), for
ail~ C SU(2) ~SU(2), s&e',

Ir(a,s)C, =a„VQ.,s)e„'(x)frg. ,s)-' =g,Z„,g ')e,'(~g)(x+ a)},
Ir(a, a)e„'(x)rr Q. ,a)-' =g,e,g~(a)(x+s)}Z,.(a), Vg, s)C(x)fr(a, a)-' = e(~(a)(x+s)}.

Here A - r(A) is the homomorphism of SU(2)
SU(2) onto 80, and% -a(A) is a four-dimension-
al unitary representation of SU(2) SSU(2).

As %'as explained ln the introductiony the Lo
rentz bosoQ Pock spRce 5z is R subspRce of the
Euclidean space 8~. This does not hold for fer-
mions, and the relation between Sz and Sz is
more complicated.

In b we define the subspace 8+, the subspace
of posltlve tlIQes to 58 the closed llneRr huH

of the set of vectors of the form

where Wick ordering is defined as usuaI and the
test functions f~, g&, and k, are such that they
vRnlsh for x &0,

Now we define the mapping %' from a dense set
of vectors in h+ onto a dense set of vectors in the
I orentz Pock space 5 to be the linear extension
of

t extended to a bounded map W from 8+ into 5, and
Eq. (2) holds for all X, FE h, if we replace W~ by
W. We also find that for all XC 8+, t ~ 0,

mr, ((t,5)}X=exp(- ta, )WX,

where U~((t,5)} is the unitary time translation
group in 8. By formulas similar to (3) we can
also establish the relation between the Euclidean
fleMs RQd the I orentz fields.

To establish the Peynman-Kac formula, we con-
sider a system with Yukawa interaction and poly-
nomial boson self-interaction. Let P be a real
polynomial of even degree %'1th posltlve leading
coefficient. In h we define the following opera-
tors:

tf„(t,V) = f,'dx'f, d'xa(C „(x)}:,

q„(t,V) = f,'Zx'f d' gx„:e„„'()ex„'( ):ex„( ).x

where X is defined by (I) and Q is the vacuum
vector in 7. lVO is a bounded operatox. For a
proof we define a unitary involution 8 on h such

that en, = n, Rnd

ee„'(x)e-' =g,e,'-'(ex) ~„,
where ex= (- xo, x). Then for all vectors X,I' of
the form (I), we find that

(w~, w,y), = (ex, y), . (2

Equation (2) shows that Wo is a bounded operator
with norm smaller than I. Therefore, it can be

The index x denotes an ultraviolet cutoff; V is a
flnlte voluIQ8 ln @.

Note that Q„(t,V) is not symmetric, but using
the involution 9 introduced above w'8 have

Similarly, we define in the relatBristic Pock
space 5

I „(V)=f„Exa (q„(x)}:,
Q.(V)= fv +xZ~:I.~%&. %:y.(x).

Now let XC 8+ be a finite linear combination
of vectors of the form (l). Under the above as-
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This is the Feynrnan-Kac formula. We remark
that special cax e is needed for the definition of
the operator exp[- Q„(t, V) J because the exponent

Q, (t, V) is not self-adjoint.
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W8 hRV8 n18RSursd t118 RSyn1nlstry paraXI18tsr Z = (O'II 0g) /(0II + 0'g) fcr th8 pl10'toPl'Odllo-
tion of p mesons eath photons polarized parallel and pex'pendicular to the plane of decay
for the reaction yP qpP E E p. %e find X=0.985+0.12 at a photon energy of 8.14 GeV
and Itl of 0.2 (G8V/0), consistent with pure diffraction production, or pure natural-
parity Hegge exchange.

As fixst pointed out by Freund and more recent-
ly by Bargel' and Cline, happ elastic scattering ls
expected to proceed purely by Pomeranchukon
exchange, Rnd thel efox'e photopx'oductlon Of p
mesons should be purely diffractive. If this is
correct, polarized photons should px'oduce p's
with polarizations 100% correlated with the in-
cident polarization. Specifically, the asymmetry
Z, defined in terms of the yield of p mesons o~~

produced with a polarization vector parallel to
the incident photon polarization and the yield 0~
normal to the lncldent photon polRx'lzRtlon vector,
should be unity2:

(0 II 0&)/(+II+ oi)

In the present experiment, the detection plane
of the K pairs from the decay rp-K'K is fixed
perpendicular to the production plane, and the

photon beam has a polarization which may be
oriented perpendicular or parallel to the produc-
tion plane. The measured asymmetry A is de-
fined

as'�=�(N~-N„)/(N

+N„), where N~ (N„)
is the coincidence counting rate, corrected for
accidentals, vrith the photon beam polarization
vector normal (parallel) to the production plane.
The quantity Z is related to the measured asym-
metry & by

Z =A/9, l(1 —e),

where (I'zl is the magnitude of the photon beam
polRx'lzatlon Rnd & ls R small correction fRctor
about 6%, due to the finite angular acceptance of
the K-pair spectrometer. In terms of density-
matrix elements

y

~ -(P„+P,-, )/(i1„+Pl-1).


