⁷G. L. Strobel, Nucl. Phys. <u>A116</u>, 465 (1968). ⁸K. L. Lim and I. E. McCarthy, Nucl. Phys. <u>88</u>, 433 (1966).

⁹J. L. Snelgrove and E. Kashy, Phys. Rev. <u>187</u>, 1246 (1969); W. T. H. van Oers and J. M. Cameron, Phys. Rev. 184, 1061 (1969).

¹⁰F. D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. 182, 1190 (1969).

¹¹K. E. Richie and B. T. Wright, Phys. Rev. <u>159</u>, 839 (1967).

¹²R. M. Eisberg, D. Ingham, M. Makino, C. C. Kim, and C. N. Waddell, Nucl. Phys. A175, (1971).

Inclusive Proton Distributions in Electroproduction*

E. Lazarus, † D. Andrews, ‡ K. Berkelman, G. Brown, D. G. Cassel, W. R. Francis, D. L. Hartill,

J. L. Hartmann, R. M. Littauer, R. L. Loveless, R. C. Rohlfs, and D. H. White

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850

and

A. J. Sadoff Physics Department, Ithaca College, Ithaca, New York 14850 (Received 28 September 1972)

Measurements are reported for the process $e + p \rightarrow e + p + x^0$ at $Q^2 = 0.3$, 0.6, and 1.2 GeV² and for $0.875 \le m_x^2 \le 1.875$ GeV². Protons are produced predominantly backward in the center-of-mass frame, with average transverse momenta increasing with Q^2 .

To supplement the recent data on deep-inelastic electron scattering¹ we have measured the distribution of recoil protons from the forward electroproduction of high-mass meson states. Electrons from the external beam of the Cornell synchrotron, inelastically scattered from protons at angles and energies corresponding to fourmomentum transfer $Q^2 = 0.3$, 0.6, and 1.2 GeV² and final-state hadron effective mass W = 3.0 GeV, were detected in a focussing magnetic spectrometer system.² In coincidence, protons emitted between about 45° and 80° laboratory angle were detected in a spark-chamber array behind a large-aperture bending magnet. Protons were identified by momentum and time of flight. Momenta above 230 MeV/c were detected. Data were corrected for detection efficiencies, geometric acceptance,³ random coincidences, and target wall background. Radiative effects have been estimated⁴ and are small, but no correction has been made to the data.

For each electron-proton event we compute the missing mass m_x in the reaction $e+p+e+p+x^0$, and the four-momentum transfer t (the square of the difference between the initial and final proton four-momenta). In terms of the virtual-photon reaction, $\gamma(\text{virtual})+p+p+x^0$, Q^2 is the spacelike photon mass squared, W (or $s^{1/2}$) is the total center-of-mass energy, m_x is the effective mass of the missing mesonic state, and t is the famil-

iar momentum transfer variable.

The spectrum of missing masses below m_x^2 = 0.8 GeV^2 is dominated by the radiated photon peak at $m_x^2 = 0$, and by the ρ^0 and ω peak⁵ at m_x^2 $\approx 0.6 \text{ GeV}^2$. The geometric aperture of the detection system imposes an upper limit near m_x^2 = 2.0 GeV². Figure 1 shows the Q^2 , m_x^2 , and t dependence of the virtual-photon differential cross section⁶ $d\sigma/dm_x^2 dt d\varphi$ in the range 0.875 $\leq m_x^2 \leq 1.875 \text{ GeV}^2$. The spectrum is flat in m_x^2 over the range displayed, with no evidence (even with finer m_x^2 bins) for production of φ , A_1 , etc. The t distributions are rather gradual, fitting a form e^{Bt} with B essentially independent of m_x^2 and decreasing somewhat with Q^2 : $B = 2.6 \pm 0.2$, 2.2 ± 0.2 , and $1.8 \pm 0.2 \text{ GeV}^{-2}$ at $Q^2 = 0.3$, 0.6, and 1.2 GeV², respectively (averaged over m_{\star}^{2}). The Q^2 dependence is more striking when compared with the value $B \approx 4.0 \text{ GeV}^{-2}$ obtained at the same W and m_x^2 in photoproduction.⁷ It has been suggested⁸ that a decrease in B with increasing Q^2 would be evidence for "shrinking" of the photon as it makes the transition from a vector-mesondominant real photon to a pointlike deep inelastic photon.

To study the Q^2 dependence of the cross section, we integrate over φ (assuming no φ variation), integrate over t {from the kinematic limit $t_{\min} \approx -[(Q^2 + m_x^2)/2\nu]^2$, assuming the best exponential fit}, and average over m_x^2 to get $d\sigma/dm_x^2$. We

FIG. 1. Plots of $d\sigma/dm_x^2 dt d\varphi$ for the reaction $\gamma(\text{virtual}) + p \rightarrow p$ + anything, as a function of m_x^2 and t for three values of Q^2 . The units along the axes are the same for the three plots: m_x^2 and -t in GeV², cross sections in $\mu b/\text{GeV}^4$ (logarithmic scale).

plot the integral in Fig. 2 as a function of Q^2 . For comparison we have included data at $Q^2 = 0$ from photoproduction⁷ at the same W and two values of m_x^2 . Since there is an apparent m_x^2 dependence in the photoproduction cross section that is not seen in the electroproduction data, it is difficult to make general statements about the Q^2 dependence. However, it seems clear that $d\sigma/dm_x^2$ is closer to the gradual Q^2 dependence of

FIG. 2. The average $d\sigma/dm_x^2$ over the range 0.875 $\leq m_x^2 \leq 1.875 \text{ GeV}^2$, as a function of Q^2 . The points at $Q^2 = 0$ are taken from photoproduction (Ref. 7). The curves are the total γ (virtual) + p cross section (solid) and the function $(Q^2 + m_\rho^2)^{-2} \exp(Bt_{\min})$ (dashed), both renormalized to pass through the measured $d\sigma/dm_x^2$ at $Q^2 = 0.3 \text{ GeV}^2$.

the total γ (virtual)+p cross section¹ (solid curve) than to the prediction of naive ρ dominance (dashed curve).

The spectra in m_x^2 and t can be transformed into distributions in the proton momentum components in the center of mass, p_L (along the virtual photon direction) and p_T (transverse). The resulting invariant cross sections $2E d\sigma/dp_L$ $\times dp_T^2 d\varphi$ are flat in p_L and approximate the form $a \exp(-bp_{T}^{2})$, with $a = 72 \pm 4$, 41 ± 2 , and 20 ± 2 $\mu b/GeV^2$ and $b = 3.2 \pm 0.2$, 2.7 ± 0.2 , and 2.4 ± 0.2 GeV^{-2} for $Q^2 = 0.3$, 0.6, and 1.2 GeV^2 , respectively. At $Q^2 = 1.15 \text{ GeV}^2$, W = 2.63 GeV there are corresponding data for the forward hemisphere.⁹ The $p_{\tau} = 0$ cross sections are plotted against x $=p_L/p_{\rm max}$ and compared in Fig. 3. It is clear that protons are emitted predominantly in the backward hemisphere in the center of mass of the virtual-photon-proton collision, in contrast to some parton-model predictions.¹⁰ If the invariant cross section is actually flat throughout the backward hemisphere, as it appears to be in Fig. 3, then the corresponding m_x^2 distribution at $t = t_{\min}$ is also flat out to the kinematic limit at $m_x^2 = (W - M_p)^2$. If we assume that B is also constant, it is then possible to extend our measured values of $d\sigma/dm_x^2$ (Fig. 2) and arrive at a

FIG. 3. The cross section $2E d\sigma/dp_L dp_T^2$ at $p_T=0$, $Q^2 = 1.2 \text{ GeV}^2$, and W=2.63 (DESY) or 3.0 (Cornell), plot-ted against $x = p_L/p_{\text{max}}$.

rough estimate of the total cross section for $\gamma(\text{virtual}) + p \rightarrow p + x_0$ for all $m_x^2 > 0.8 \text{ GeV}^2$. The result is typically 40% of the total $\gamma(\text{virtual}) + p$ cross section. The remaining 60% is presumably accounted for¹¹ by meson states below $m_x^2 = 0.8 \text{ GeV}^2$ and by neutron final states.

³At each of the three Q^2 values two runs were taken with different positions of the proton spark chambers, in order to extend the range in m_x^2 . The data from the two geometries were combined after taking account of the geometric acceptances. ⁴The soft-photon (real and virtual) correction has been estimated using a modified form of the prescription given by A. Bartl and P. Urban, Acta Phys. Austr. 24, 139 139 (1966). The contribution of hard-radiation events $(x^0 = \pi^0 + \gamma)$ from the nucleon resonance region was estimated with a Monte Carlo technique using a reasonable model for resonance electroproduction. Soft radiation merely shifts the overall cross-section normalization slightly; the hard-radiation effect is completely negligible in our detection aperture.

⁵A plot of the complete mass spectrum from a preliminary analysis of this experiment is given by D. Andrews *et al.*, in *Proceedings of the Fifth International Symposium on Electron and Photon Interactions at High Energies, Ithaca, New York, 1971*, edited by N. B. Mistry (Cornell Univ. Press, Ithaca, New York, 1972), p. 273. The final results on the ρ^0 and ω contribution will be given in a separate report. Qualitatively, the conclusions of an earlier experiment [D. Andrews *et al.*, Phys. Rev. Lett. <u>26</u>, 864 (1971)] are confirmed by the newer $\rho^0 + \omega$ data.

⁶The usual virtual-photon flux factor Γ has been divided out of the measured electroproduction differential cross section. φ is the azimuthal angle of the state x^0 about the virtual-photon line.

 7 G. E. Gladding, J. J. Russell, M. J. Tannenbaum, J. M. Weiss, and G. B. Thomson (unpublished). We are indebted to M. J. Tannenbaum for useful discussions and information on their results before publication.

⁸H. Cheng and T. T. Wu, Phys. Rev. <u>183</u>, 1324 (1969); R. W. Griffith, Phys. Rev. <u>188</u>, 2112 (1969); J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D <u>3</u>, 1382 (1971).

¹⁰For example, see S. D. Drell, D. J. Levy, and T.-M. Yan, Phys. Rev. Lett. <u>22</u>, 744 (1969), and <u>24</u>, 855 (1970).

¹¹The assumption has been made throughout this paper that there is no dependence of the cross sections on φ . The detection aperture in φ is not large enough to check this. In principle, since the virtual photon is polarized, it may be that the detected φ range is not representative of the average over φ .

^{*}Work supported by the National Science Foundation. †Present address: Brookhaven National Laboratory, Upton, N. Y. 11973.

[‡]Present address: Department of Physics, University of Rochester, Rochester, N. Y. 14627.

¹G. Miller et al., Phys. Rev. D 5, 528 (1972).

²The apparatus is described in somewhat more detail by E. Lazarus *et al.*, Phys. Rev. Lett. 29, 743 (1972).

 $^{{}^9}$ F. W. Brasse, W. Fehrenbach, W. Flauger, K. H. Frank, J. Gayler, V. Korbel, J. May, P. D. Zimmerman, and E. Ganssauge, DESY Report No. 71/19 (unpublished).