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The scattering of surfons by point mass defects in a solid surface is calculated in
terms of field-theoretical scattering theory. Scattering cross sections for incident
Rayleigh-mode surfons into other Rayleigh-mode surfons and into one with a total-re-
flection mode are estimated as functions of incident frequency. It is shown that both of
these cross sections have typical resonance structure in the frequency region w=(1~3)
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Quantization of elastic surface waves has re-
cently been done by Ezawa,! who constructed a
complete orthogonal set of the eigenmodes of
elastic waves in a half-space with a stress-free
plane boundary. The real surface of solids, how-
ever, is rather rough, so that surfons, the quan-
ta of elastic surface waves, will be scattered
by the surface irregularities considerably. Scat-
tering of Rayleigh waves by surface mass defects
has already been discussed by Steg and Klemens?®
in a perturbative approximation, showing that the
scattering varies as the fifth power of the fre-
quency.

It is well known that there exists resonant scat-
tering of lattice waves by point defects in crys-
tals. Even in the presence of the surface bound-
ary, we anticipate the resonance scattering of
surface elastic waves by point defects localized
in the solid surface; and we should, therefore,
take into account the higher-order effects in cal-
culating the scattering amplitudes. However, the
presence of a boundary surface makes it some-
what difficult to obtain a scattering amplitude by
means of the lattice Green’s-function method.?

For this purpose, the present author and Na-
kayama proposed previously an alternative ap-
proach® for calculating the scattering amplitude,
which was originally developed by Chew and Low®
for meson scattering by a static source.

In this Letter, we apply this formalism to in-
vestigate surfon-mass-defect scattering and cal-
culate the scattering cross section in the iso-
tropic-elastic-continuum approximation. We as-
sume the solid occupies the half-space z = 0 with
a stress-free surface z=0. For simplicity, we
deal with a point mass defect lying in the surface.

We can expand the displacement 4(7,?) at a
point ¥=(3,z) and a time ¢ in terms of eigen-
modes,’
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where p is the density of the crystal, J is the set
of quantum numbers, and @, is the annihilation
operator of mode J. J is composed of three quan-
tum numbers: the wave vector K in the x-y plane,
the propagation velocity ¢ in the x-y plane, and

a symbol m to label the five eigenmodes of sur-
face elastic waves in a half-space; that is, J
=1{k,c,m}.

Since the point mass defect is assumed to be
localized in the solid surface, it would be enough
to take into account only two modes: the Ray-
leigh mode and the mode with total reflection,
among five modes which form a complete orthog-
onal set of the eigenmodes. The other three
modes, having only oscillating wave functions
at a distance z from the surface, will contribute
less to scattering in the high-frequency region.

Concrete expressions of the wave function
#‘?(z) for the Rayleigh mode (m =R) and the
mode with total reflection (m =T) are explicitly
given in Ref. 1. Therefore the relevant interac-
tion Hamiltonian of surfons with point mass de-
fect can be obtained by inserting U =liz + Uy into
H'=3AM(dd/dt)?, where Qi and d; are displace-
ments due to individual Rayleigh-mode and total-
reflection-mode surfons. AM is the difference
between the mass of defect and the average mass
of the atoms. Thus we have to consider the two
kinds of scattering processes for incident Ray-
leigh-mode surfons:

R+AM —-R+AM, (2a)

R+AM~T +AM. (2b)

The scattering amplitudes for the processes (2a)
and (2b) are defined as

TJ(J’)E(Z»DJ'-]VJ{Z/)())y
RJ(J’)E<¢J'-IVJT1¢0>’

where
VJ :[H,’aJ]’ J= {E, CR,R},

J' = {E’,CR,R} or {}T:',c’,T}.

(3)
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The state vector ¢,”) is defined as an eigenstate of the total Hamiltonian composed of a single mass
defect plus one J-mode surfon with an outgoing wave. [§, represents just the ground eigenstate of a
single mass defect. Thus the relevant scattering amplitude for J—J’ is T ;(J’). cy is given as the solu-
tion of

4{[1 - (cp/c,Pl1 = (cr/c P12 =[2—- (cr/c, )T,

where ¢, and ¢, are the transverse and longitudinal sound velocities in bulk crystals.
Following the standard method developed in Ref. 4, we obtain integral equations for the amplitudes
(3), using a one-surfon approximation in the intermediate state:
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R,J")=R,8(J") - 2[
T ,%(J’) and R ;®(J’) being the amplitudes in the Born approximation. In Egs. (4), we may safely neglect
the first term in the bracket on the right-hand side, since the energy denominator of that term does
not have a zero. Therefore, we need only solve the following integral equations for T ;(J’):
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We try to obtain an approximate solution of Eq. (5) by replacing one of the scattering amplitudes in the
integral with the amplitude in the Born approximation. This approximation is shown diagrammatically
in Fig. 1, and is given analytically by

T ,B*(J")T (JII)
N=1T Beyry _ J L
TJ(J) J (J) JZ”) wJ”_wJ,--Z.€ ’ (6)

Then, the solutions of Eq. (6) can easily be obtained by the standard method, and we have the following
expressions for the cross sections:
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C,, C,, D,, and D, are some dimensionless con-
stants which depend upon ¢;, ¢;, and cg. W,y iS
the maximum surfon frequency, corresponding
to the Debye frequency in the bulk phonon case.
Resonant parts in the square bracket on the

right-hand side of Eqgs. (7) and (8) represent the
higher-order rescattering effect of surfons with
static mass defects, and thus it is seen that scat-
tering in lowest-order perturbation theory varies

FIG. 1, Graphical schemes for the simultaneous in-
tegral equations (6). Solid line, physical mass defect;
dashed line, Rayleigh-mode surfon; wavy line, that
with a total-reflection mode. Open and shaded circles,
physical amplitudes for the processes (2a) and (2b),

as the fifth power of the frequency, as predicted
in Ref. 2.

respectively. Closed circle, amplitude in Born approx-
imation.
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FIG. 2. (a) Surfon—-mass-defect scattering cross section as a function of frequency in units of wy,, for aM= —4m
and —6m, where m is the neutron mass. Case I, AM =—4m; case II, AM=—6m. The superscript B refers to the

Born approximation. (b) Same as in (a) but for AM =~ 20m,

In order to show an actual frequency depen-
dence of the cross sections (7) and (8), we take
the following typical values of parameters for Si:
p=2.5g/cm? ¢,=5.3%10° cm/sec, ¢;=9.5x10°
cm/sec, and cx=4.9%X10° cm/sec. Here, we as-
sume the maximum frequency w ., to be 0,75
x10'* sec™!, which may be somewhat smaller
than the Debye frequency.

The cross sections in the present approxima-
tion are shown in Figs. 2(a) and 2(b) for various
masses of static defects together with the cross
section in the Born approximation.

As there are two different kinds of resonance
terms in Egs. (7) and (8), we have two typical
resonance scatterings for the mass ranges 4m
< - AM<Tm and 16m < — AM < 34m, respectively,
in the frequency range w =0.15w ,,—0.4w .4 (m
is the neutron mass). These characteristic fea-
tures agree qualitatively with the results ob-
tained in Ref, 4, in which only the scattering of
Rayleigh-mode surfons was considered.

Defining a partition ratio 6 as in Ref. 2, which
is the rate of scattering into other Rayleigh modes
relative to scattering into the total-reflection
modes, 6=0g-7/0g.z, we have a frequency-in-
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dependent ratio in the Born approximation which
gives a value around 1.6. If, on the other hand,
we take higher-order rescattering effects into
account, the partition ratio decreases and gives
a value smaller than 1 as is seen in Figs. 2(a)
and 2(b). Therefore, we conclude that the re-
scattering effects enhance the scattering into
other Rayleigh-mode surfons. It should also be
emphasized that resonance scattering appears
for a static surface defect of lighter mass than
that of the host atoms in surfon-mass-defect
scattering.

The author thanks T. Nakayama for discus-
sions. ‘The numerical calculations were per-
formed using a FACOM 230-60 computer at the
Computer Center of Hokkaido University.
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