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A generally covariant classical model for gravity, vrhich in the limit of weak fields is
essentially equivalent to Fulii's massive dilaton theory, is obtained when the invariance
under a group of space-time-dependent geometry-preserving mass-unit transformations
of a scalar-tensor theory is broken by ascribing a mass to the scalar field. The experi-
mental consequences are discussed.

In recent articles" Fujii has proposed a theory
in which a nonzero mass is ascribed to the Nam-
bu-Goldstone boson of scale invariance, the dila-
ten. The coupling of this particle with matter
then leads to a gravitational potential V which
has, in addition to the usual long-range Newtoni-
an part, a component with a finite range of order
m ', where mi (in units with o =1), is the dilaton
mass. From arguments based on the dilaton-
graviton mixing problem in strong-interaction
phy81csy Fuj11 suggests that Pl should be of the
order of 1 km or less. A study' of the existing
experimental data limits m ' to be either between
10 m and 1 km, or less than 1 cm.

It is the purpose of this note to present a purely
classical (nonquantum) generally covariant model
for gravity which, in the weak-field approxima-
tion, reduces to a theory essentially equivalent to
Fujii's. It is hoped in this way not only to extend
the validity domain of the theory beyond weak
fields but also to gain some insight into the mean-
ing of scale invariance and units transformations
and their connection with gravity.

In a previous work' the relationship between
Mach'8 principle and a group of space-time-de-
pendent scale changes in the unit of mass was dis-
cussed within the context of the Brans-Dicke theo-
ry' of gravity. Transformations of the scalar
field y and the stress-energy tensor T&; under
this (mass-gauge) group were defined so as to
preserve both (i) the geometry of space-time and
(ii) the form of the field equations and hence the
law of conservation of energy. A theory fully co-
variant under this group is obtained when the
Brans-Dicke coupling constant ~ = 0. The strange
situation then results where a knowledge of the
space-time geometry (e.g. , as deduced from as-
tronomical observations) does not suffice to de-
termine, even qualitatively, the mass-energy
content. '

We now consider the effect of breaking mass-
gauge invarianee by adding a scalar-field mass

term —m'f(y) to the Lagrange function. This re-
sults in the action principle

& J(-g)'"[yR+16wL -m'f(y)] d'x =0,
with R the curvature scalar, L the Lagrangian
for matter. The field equations are

Gq~ =8wp T])+p

3&y —m'(yf' —2f) =SwT,

where a semicolon denotes covariant differentia-
tion, a prime denotes differentiation by q, Uq
=g"cp.;~ withg;, the metric (signature +2), and

6;, is the Einstein tensor. The sealm property
of p prevents us from specifying a Prion the
form of the function f. We note also that the
weak principle of equivalence' (i.e. , geodesic mo-
tion for small particles) remains valid for the
action (1).

For the treatment of local and astronomical
(noncosmological) problems we demand that a
weak-field approximation should be possible.
For this pux'pose we write

g»» ='»1»g+" »»~ »t' = Po+ 5 ~

where q&, is the flat-space metric, go=60 ' is
the constant background value for the scalar field,
and It»& and $ are small perturbations due to local
masses. Consistency of the field equations then
requires thatf(y, ) =f'(q&, ) =0. Because of the fac-
tor m', we ean, without loss of generality, setf"(p&&) =3+, '. The simplest such function is
given by

However, the weak-fieM equations, which are
our particular interest in this note, are indepen-
dent of the precise form of f.

Assume now a stationary mass distribution.
Keeping only terms of first order in h;; and g,
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using the coordinate conditions

t)'"(h;; —2 ';,h) ~ =C;o$,

where a comma indicates partial differentiation,
and solving the resulting (weak field) equations,
we find

y=y, ——,
' f(Te "/r) d'x',

(8)

where r = lx —x' I and the integrations are over all
three-space. For time-dependent systems the
above can be replaced by the corresponding re-
tarded-time solutions. Note that putting m -~ re-
covers precisely the general relativistic expres-
sions. '

We consider next a point source of mass M.
From (8) the g«component of the metric yields
the modified gravity potential

This is exactly the form used by Fujii to illus-
trate the experimental consequences of his theo-
ry. Thus if m ' does lie between 10 m and 1 km,
Go will be the gravity constant involved in geologi-
cal and planetary phenomena, while that mea-
sured by a Cavendish experiment will be G = pGO.

Therefore the same renormalization by the factor
—,
' of the planetary masses will apply in our model.

The solution (8) furthermore yields expressions
for the gravitational red shift

6v/v =6[(G,M/r)(1+ Se ")],
and for the deflection of a light ray passing (e.g. ,
the sun) at a minimum distance R from the center,

8 = 4GOMR

Only for values of r-m ' does (10) differ from
the usual Einstein value. For the light deflection,
on the other hand, the intermediate range force
has, to this approximation, no effect at all. Final-
ly, to discuss the perihelion shift, we needg« to

second order in x '. Nevertheless it is clear
that if r&m ', as is the case for Mercury, the
general relativistic value will result.

The almost-flat aspect of space in our immedi-
ate vicinity is usually attributed, via Mach's prin-
ciple, to the effect of all the distant matter in the
universe. Similar arguments can be advanced to
account for the background value GD

' of the sca-
lar field since it is well known that, approximate-
ly, GO=@M ', where @ is the radius and M the
mass of the visible universe. One of the more
satisfactory attributes of the present model is
that, besides the range m ' of the non-Newtonian
force (which value, Fugii claims, ' should be de-
rivable from elementary-particle physics) no ad-
ditional parameters have been introduced.

Finally, a word on scale invariance: The most
natural extension of this symmetry to curved
space is via conformal invariance. However, it
can be shown' that adding a symmetry-breaking
term to the conformal invariant scalar-tensor
theory cannot lead to a theory incorporating an
intermediate-range force. The close agreement
between the predictions of the model advanced in

this note and Fujii's massive-dilaton theory sug-
gest that a close connection might exist between
scale invariance and the group of geometry-pre-
serving space-time-dependent transformations'
of the unit of mass.
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