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Determination of the Electron Density Matrix from X-Ray Diffraction Data
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We present a method for the conversion of x-ray diffraction data into an electron den-
sity which reflects the antisymmetry of the N-electron wave function.

In 1969 a series of papers' were published out-
lining a method for the direct determination of
density matrices. In what follows we point out
how the method may be used to convert coherent
x-ray diffraction data into the electron density of
the unit cell in any crystal and, therefore, in the
constituent molecules.

The fundamental equation in x-ray structure
work is

E(G) = (E(G) )e'+'f i = fd're' 'p(r), (1)

where E(G) is, in general, the complex structure
factor evaluated at the reciprocal lattice vector
G and p(r) is the electron density in the crystal.

Methods for direct determination of the density
matrix via diffraction data' have commonly ne-
glected the important quantum-mechanical condi-
tion of N representability. There is little hope
that such inappropriate density matrices may be
compared to those derived from wave functions.
Recently, Jones and Lipscomb' have emphasized
the importance in crystallography of using mole-
cular densities that are properly N representable.
They ensure this condition by working directly
with antisymmetrized wave functions.

In the present note we suppose the structure to
be known and use the diffraction data to directly
fix the density matrix which has a form automat-
ically ensuring N representability.

It is well known that the Hartree-Pock one-body
density matrix satisfies p(r', r) = p*(r, r') and
fd'r p(r, r) =N and is idempotent, i.e.,

fd'r" p(r', r" )p(r", r) = p(r', r). (2)

This, of course, implies that a matrix represen-
tative P in any other basis must also have these
properties since p(r', r) =trPg (r')g(r). The con-
verse is also true. That is, P2=P, P=Pt, and
trP =N constitute conditions sufficient to ensure
Hartree- Fock representability. This means
that the coordinate-space representative p(r', r)

is derivable from an N-electron single determi-
nantal wave function 4'(1, ..., N) via p(r', r)
=N fd(2. ~ .N) 0'*(r', 2, ..., N) 0'(r, 2, ..., N).

We have shown' that the above conditions can
be attained by reducing the quantity tr(P2 —P)2 to
constraints of the form trPA = (A,z) (including
trP =N), where A, , -=(g, , A,pg&). This leads to an
iterative equation

(3)

where n labels the different constraints. This
equation converges rapidly to idempotent solu-
tions satisfying the appropriate constraints pro-
vided the Langrange multipliers A.

" are deter-
mined at every iteration by

&-'"'=Es(r ')-a&a'"',

where 7'
a =—trA A a and ha~"~ = (A a) —tr(3P„'

—2P„')AB, the latter tending to zero as P„ap-
proaches solution. Now since E(G) = jd'r ' eop(r),
we can view E(G) as one of the constraints and
e' ' as one of the constraining operators in Eq.
(3). Thus, if we define the matrixf;, —= (g;, e' 'g,),
then

E(G) = trPf(G) =Q;;P;, f(G).

inserting this expression into Eq. (3) we have

P„,=3P„2—2P„+Q a "(G)f(G).

Since we expect the molecular electron density to
be adequately represented in a Hartree-Fock ap-
proximation, then it is quite reasonable to expect
that Eq. (4) will converge to an idempotent solu-
tion which also represents the experimental
structure factors.

We wish to emphasize the importance of Eq. (4).
Its solution gives an electron density which is
consistent with the experimental structure factors
and properly accounts for the antisymmetry re-
quirement on the electronic wave function.

In order to illustrate the previous discussion

1363



VOLUME 2g, NUMBER 20 15 NOVEMBER 1972

TABLE I. The elements of the density matrices as a function of the orbital ex-
ponent (.

LNI (ls~ ls) Pm (ls, 2s) Pm (2s, 2s) L'I (ls, ls) PI {ls,2s) L& (2s, 2s}

0.98
1.00
1.02
1.04

0.8654
0.8989
0.9301
0.9589

0.4677
0.3649
0.2672
0.1745

0,1345
0.1010
0.0698
0.0410

0.9695
0.9769
0.9842
0.9910

0.1719
0.1502
0.1246
0.0943

0.0305
0.0231
0.0158
0.0090

we present a numerical example based upon the
work of Stewart, Davidson, and Simpson. ~ They
have fitted by the method of least squares a den-
sity of the form p(r„) +p(vs) to the essentially ex-
act H, density of Kolos-Roothaan. In this way a
"best" spherical-atom approximation to the bond-
ed atom is obtained. The x-ray form factors for
this "best" hydrogen-atom density mill be used
as constraints in the determination of a one-elec-
tron density matrix. The corresponding wave
function will then represent the electronic state
of R bouDd hydx'ogen atom Rs viewed by R beRm of
x rays.

%6 have selected an orthonormal two-function
hydrogenic basis

(+) (g3/&)1/2e
- tr

y..(~) =(&'/8~)'"e '"I'{I- -.'«).
%6 represent the electron density in this basis
as

p{r', r) = trey t(r') y(r),

where the form of the density matrix is

(I-p qi

The elements of the above matrix P are deter-

TABLE H. Comparison of selected exact and cal-
culated scattering factors for $ =1.0. &(E&1)=0.0029;
F(zr) = 0.0189.

mined by a least™squares fit to the scattering
factors of the "best" spherical hydrogen-atom
deDslty of Stewart DRvidson Rnd Simpson. This
is done in tmo different mays. In the first the den-
sity matrix P» is nonidempotent, and is required
to satisfy trP» = I and P»=P» . In the second
the density DlRtl lx Q ls idempotent ln Rddltlon
to satisfying the conditions ter= I and PI=PI~.
For this simple case of a 2X2 matrix we may en-
sure idempotency quite simply by the require-
ment q=+p"'(I-p)'~'. In general, of course,
one cannot construct idempotent matrices so
easily —thus, the need for Eq. (4).

Note that P~ contains only one parameter to be
determined by the least-squares condition, while

P„I contains tmo such parameters. This is an
example of the general fact that idempotency re-
stricts the class of density matrices allowed and
reduces the number of independent parameters
contained therein. In addition, the problem of
correlation of parameters when the least-squares
matrix becomes nearly singular should be less-
ened. Indeed in the present example, there can
be no correlation problem for I', since there is
only one parameter.

In both the nonidempotent and idempotent cases
the best 16Rst-squR1'es density IQatrlx ls defined
by minimization of the functional

~ =-E;~(G)P (G) —t.~f(G) 1',

where Il(G) is the scattering factor of Stewart,
Davidson, and Simpson; W(G) = 6' is the weighting
factor; and f(G) is the matrix of Fourier trans-

(sins) /A,

TABLE III. Eigenvalues (Ng and Ã2) of P&& and gl
for various values of orbital exponent (.

1.0000
0.7726
0.3296
0.0714
0.0206
0.0076
0.0034
0.0017

1.0000
0.7664
0.3045
0.0658
0.0190
0.0071
0.0031
0.0016

1.0000
0.7752
0.3301
0.0744
0.0208
0.0066
0.0027
0.0015

0.
0.3,288
0.3006
0.6582
0.8158
1.0735
1+3311
1.5887

0.98
1.00
1.02
1.04

1.0936
1.0407
1.0063
0.9909

—0.0936
—0.0407
—0.0063

0.0090

l.
1.
1.
1.

0.
0.
0.
0.
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TABLE IV. Elements of the density matrix for systematic errors in the scat-
tering factor data via E' —SE', 1.00-8-1.04. The orbital exponent is in all cases
$ =1.0.

1.00
1.02
1.04

0.8989
0.9172
0.9359

0.3649
0.3746
0.3844

0.1010
0.0827
0.0640

0.9769
0.9725
0.9684

0.1502
0.1634
0.1748

0.0231
0.0275
0.0316

forms of products of our basis functions.
In Tables I—VI we present numerical results.

In Table I we give P„I and Pz for several values
of the orbital exponent g. One notes that both P„z
and P~ are physically reasonable in the sense
that the density represented corresponds essen-
tially to a Is state with a small amount of the 2s
state mixed in to account fox the molecular nature
of the "best" spherical hydx ogen density of Stew-
art, Davidson, and Simpson. In Table II the scat-
texing factors E» and E~ for the densities of
Table I (g = 1.0) are given and compared to the
exact values of Stewart, Davidson, and Simpson.
One notes that both P~l and PI give a good re-
presentation of the exact scattering factors al-
though P„I is on the average better as indicated
by the value of the least-squares functional (see
bottom of columns 1 and 2).

In Table III we list the eigenvalues of P» and

PI. Here a striking effect of idempotency is ap-
pal'eIlt Eor all cas8s tile elgensalues of Ppl
'violate tke tvgot ous Q'uantum-mecAQnxcQE condi-
tion that they must be either" 0 Ox 1 in oxdn" tAat
tl'18 density be derivable from a Isazre function.
Thus, methods' that follow the simple least-
squares procedure used hex'e in determining P»
will always be in danger of quantum-mechanical
invalidity. In the one-electron problem, idempo-
tency ensures quantum-mechanical representabil-
ity. In the many-electron problem, idempotency
ensures only Hartree-Fock or single determinan-
tal representability. In order to ensure N repre-
sentability in general, one would have to work
with inequalities on the eigenvalues of P. Given
the present accuracy of molecular-structure fac-

tors, the Hartree-Fock algorithm given in Eq.
(4) is probably quite adequate.

In Table IV we illustrate changes in the density
matrix induced by systematic errors introduced
into the scattering factors of Stewart, Davidson,
and Simpson via E(G) -SE(G) for l.00 ~S ~1.05.
Such variations might be expected from errors
in the experimental scale factor. The density
matrix P» follows these errors more closely
than does P;. Typically, for P» a 5% error in
E(G) induces approximately a 5/0 error in the
principal element P„l(ls, 1s). The corresponding
element of Pz suffers only a 1% error. Thus, the
very flexibility which allows P» to fit the exact
E(G) data better on the average also allows it to
fit these systematic errors better.

In Table V we introduce a change in the scatter-
ing-factor data of the form E(G) -exp(- BG')E(G)
for 0.0 «8 «0.4. This would be analogous to a
change caused by isotx'opic lattice vibrations such
as those due to thermal effects. In the calcula-
tions of this table no temperature parametex's are
indroduced into the basis to compensate for the
flctltlous experimental tempex'atul e effect, Note
that as 8 increases, both P» and PI suffer si.g-
nificant changes away from their ideal values at
8 =0. Table VI shows that at least in this simple
case the temperature effect can be adequately
compensated for by inclusion of an appropriate
temperature factor in the basis. Here each basis
function is modified by a temperature factor
exp(- BG'/2), where B is identical to that used to
Inodify E(G)~ l.e, ~ $I exp(- BG /2)pg. Tile val'1a-
tions in P are now insignificant, implying that the
"experimental" temperature effect introduced in

TABLE V. Elements of the density matrix for changes in the scattering factor
data via E—exp(-BG )E'. The orbital exponent is $ =1.0.

P&& (lg, 1s) P&& (1s,2s) E'&& (2s, 2g) P& (1s, ls) Pz (1s, 2s) P& (2s, 2s)

0.8989
0.9476
1.0429

0.3649
0.2460

—0.0094

0.1010
0.0523

—0.0429

0.9769
0.9846
0.9976

0.1502
0.1232
0.0488

0.0231
0.0154
0.0024
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TABLE VI. Elements of the density matrix for changes in the scattering factor
data via E exp{-BG )E, and for corresponding changes in the basis P exp(-B
XG2/2)g& . The orbital exponent is t =1.0.

Pz& (ls, ls) P&l (ls, 2s) Pz& (2s, 2s) Pl (is, ls) P& (ls, 2s) Pz {2s,2s)

0
0.2
0.4

0.8989
0.8994
0.8999

0.3649
0.3641
0.3631

0.1010
0.1005
0.1000

0.9769
0.9771
0.9772

0.1502
0.1497
0.1491

0.0231
0.0229
0.0228

Table V has been taken care of by the "theoreti-
cal" temperature factors in the basis. Of course,
in an actual case the whole problem of how to ac-
count adequately for thermal effects will be quite
complicated. The calculations of Tables V and VI
are suggestive that a temperature-dependent ba-
sis of the form g,. —=g;exp(-8;('/2) will be use-
ful in accounting for the temperature effect within
the context of our formalism. This is analogous
to the approach used by Coppens' who, however,
assigned a temperature factor T,, to each prod-
uct g;*g;. One might also allow each basis func-
tion to have a more complicated temperature de-
pendence via their orbital exponents. There are
yet other ways of including thermal factors. Since
both the density matrix P and the basis g depend
upon nuclear coordinates, the thermal average of
the calculated density must be studied with some
care, This is an especially important point since
as recently pointed out by Coppens, ' aspects of
molecular bonding can be spuriously represented
by anisotropic thermal parameters.
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Ultrasonic measurements have been made in an oriented smectic liquid crystal. The
material was abgned by cooling through the liquid crystal-isotropic liquid transforma-
tion in the presence of a 12.4-kOe magnetic field. The ultrasonic attenuation. is signifi-
cantly more anisotropic than it is in nematics. The velocity also has a measurable an-
isotropy {-5%). The velocities give certain of the elastic constants in de Gennes s
theory of the smectic state.

There have been some ultrasonic measure-
ments in smectic liquid crystals, ' ' but in these
studies no attempt was made to orient the mole-
cules in the sample material. In this note, ultra-
sonic data are obtained for an oriented smectic;
the material is oriented by cooling it through the

isotropie liquid-smectic transition in the pres-
ence of a large magnetic field. In this case the
optic axis of the liquid crystal lies in the direc-
tion of the field, the same as for nematics. '

The experimental situation has already been
described in an earlier publication. ' A MATEC


