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and at t =0 the modulation begun. Note that the
response of the modulation frequency is linear
in the modulation amplitude s, whereas the re-
sponse at the natural frequency shows threshold
behavior near the theoretical value of ~. The
amplification saturates at R low level possibly
because of detuning produced by nonlinear fre-
quency shift.

The linearly driven oscillations produced by
the growth-rate modulation exhibit a resonance
behavior near ~=&0, the natural frequency. Lin-
earizing with respect to z and neglecting the non-
linear sources, we find the amplitude of the os-
cillation of H at the modulation frequency to be

and thus I AHnl ~„=—g, s/[2(S+R/g, )j which can
be very large.

In conclusion, by analyzing the model equations
(6) and (7) we find many interesting features re-
gRl ding the SRturRtlon stRtes, relRxRtlon oscllla-
tions and their damping. Although our model
equations represent a somewhat idealized situa-
tion they will be a good first approximation for
a number of different problems in which mode

coupling between growing and damped waves

plays an important role. However, our equations

do not include the effects of harmonic genera-
tion. Since harmonically generated waves are
coherent, it is inappropriate to include them in
H. Inclusion of this effect will be left to a future
investigation.
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Structures are observed in the current-voltage characteristics of a type-II supercon-
ductor in crossed fields. This effect can be explained as due to coherent quasiparticle
excitation when the electromagnetic fields satisfy excitation conditions.

In previous reports the author showed that in a
longltudlnRl magnetic fleM some structures Rre
observed in the magnetic field dependence of the
superconducting current threshold" and in the
current-voltage characteristics of the resistive
superconducting state of a type-II superconduc-
tor. In this Letter we would like to show that in
a transverse magnetic field, structures are also
observed in I- V curves, and that the origin of the
structures can be attributed to coherent quasipar-
ticle excitations which occur when certain condi-

tions for the fields are satisfied.
We investigated the properties of the resistive

superconducting state of Nb-25% Zr wire speci-
mens of 0.025 cm diam at IO'K in a transverse
magnetic field H and pulsed electric field E. Fig-
ure I shows a typical example of the current-
voltage curve. Steplike structures appear in the
curves similar to those seen in the longitudinal
magnetic field. ' In Fig. 2 the values of the fields
E and H where the structures appear are plotted.
It is seen from the figure that the values of the
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FIG. 1, An example of the structures which appear
in the current-voltage curve of Nb-Zr wire specimens
in a transverse magnetic field.

fields satisfy the relation

(Z/Z*)'- [a/(2m+ 1)a+]'=(2s) '
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FIG. 2. Plot of the values of the fields E and & where
the structures are observed. The solid curves show
zq. (~).

(m, n integers) (1) we find from Eq. (2) that

with E*=13V/cm, H*=(c/vF)E*=0.9 ko, vF
=1.5X10' cm/sec.

In the following we consider the condition for
the quasiparticle excitation in the crossed fields
on the basis of the Bogoliubov equation':

eu(r, o) = (2m) '(p'- p F')u(r, o)

+QpE(r)p~pv(r, p),
—~v(r, o) = (2m) '( p' -p F') v(r, o)

(&'-vr'p'- I&I')x, =o (i =1, 2, 3, 4).

This equation can be expressed in a form which
is linear in the four-dimensional momentum op-
erator, like Dirac's relativistic wave equation,

[e/vF ~,o p ~.l&I/vFlx, =o,

he.e
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u and v are defined by the unitary transformation
of the one-electron annihilation operator

y(r, o) =Q, [u, (r, o)y, +v, *(r, o)y, tj,

with spin o at point r; y, is the annihilation oper-
ator of a quasiparticle in a quantum state s, e
and p are the energy and momentum of the quasi-
particle, respectively, pF=mvF is the Fermi mo-
mentum, and ~(r) is the pair potential.

Using the relation

(2~) '(p'-p ')=v (Ipl-p. ),

and putting

u(r, &)
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It is easy to verify that any solution of Eq. (4) is
»so a solution of Eq. (3) when there is no elec-
tromagnetic field. When the electromagnetic po-
tentials are involved, however, a solution of Eq.
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(4) is no longer that of Eq. (3), but satisfies an equa. tion

iS s e ' S e- ' I&l' Se - . Se
VF t

2————
cp — —. V'- —A — -,— ——0 H+zp, —O'E X.=0

C VF VF
(5)

It is well known that, in the mixed state of superconductors in crossed electric and magnetic fields,
the fluxoids move with flow velocity v~=cE/H. ' The maximum velocity of the fluxoid may be the Fer-
mi velocity vF. ' When cE/H & vr, , a degradation of superconductivity can be expected due to the quasi-
particle excitation. We investigate the condition for the electromagnetic field in which the excitation is
allowed by solving Eq. (5) in the crossed fields E =(0, E, 0) and H =(0, O, H). We choose the electromag-
netic potentials as @=0 and A=(O, Hx —cEt, 0), and put w=x —(cE/H)t. Assuming that y, is a function
of w, y, and z, we can rewrite Eq. (5) as

.eH -' . eH &' l&P—g 2 + —-1—'N +ig —+
~w ~g Sc Sc ~z v F

X, =0,

with

g= [(cE/vvH)' —1]"'.
Looking for a solution of this equation in the form

y,. = exp(ik, y)E(u)) G(y),

we separate Eq. (8) into (w, y) and z parts:

! of the wave packet of the quasiparticle as v'2 n],
and assuming that the constant K takes an imagi-
nary value

K = i( @~2 o. $) 2,

we have from Eq. (9)

82 eA ' . eHg' —,+ k — — ge ~ig -E E(ge)—=0, (7)
RC hc

~'(E'/E '-H'/H ') =(2t+1*1) '

where

(10)

[8'/sz'- I/~'- Z] G(y) = 0, (8)
H„= (c/v~)E„= Sc/2e ]'

where the coherence length $ =
I b, I/vz and K is a

constant. Equation (7) has physically acceptable
solutions only when

K = (eH/Sc)g(2l I++ 1)i (l an integer).

In the range of excitation energy around I b, I,

each quasiparticle is regarded as a mixture of an
electron and a hole. Putting the spatial extension

Comparing Eq. (10) with the observed result Eq.
(1) for the case m =0 and with use of the observed
value of the upper critical field H„=8 kG, we
get n =3 and E„=120V/cm. On the other hand,
Eq. (8) has a solution

G(z) = exp[~ (z/g) (1+i/2u') "']= exp[~ z/]].
From the solutions of Eqs. (7) and (8), an Abri-
kosov-type function' can be constructed for the
excited quasiparticle field with l =. 0:

y, = exp(- I z I /$) exp(- ieHw'/2Scg)a, (k,(y +~/g)(1+i)/&2!1),

with

k, = (geH/Sc) "'.

This expression shows that the stripes of the excitation density wave move in the direction tan& =y/x
=g with velocity v F. The electric field in the superconductor may be maintained by the polarization of
the quasiparticles.

The existence of structures when cE/H ~vF [m &1 in Eq. (1)] can be explained as follows. The pair
potential around a fluxoid will have an expression

A(r) =!4!exp(2iq. r),

with the quantization condition for a flux quantum
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Since BCS wave functions can be built by pairing
electrons (k+q, &) and (-k+q, &), we must use
one-electron states satisfying the quantization
condition around the fluxoid

(2j+1)n= fk.dr =2m)k (j an integer)

or

comparable to the coherence length $.' ' On the
basis of our discussion, these phenomena may be
interpreted as phenomena due to coherent quasi-
particle excitations in the absence of a magnetic
field.

Certain characteristics of these phenomena
may have applications in high-speed-computer
elements and high-frequency oscillators.

When the condensed state moves with the velocity
v, (r), the local excitations may have a shifted
BC8 spectrum

e(k, r) =
~
a(r)

~
+av, k. (12)

From Eqs. (11) and (12) we see that the excitation
spectrum becomes gapless when

This relation teaches us that Eq. (5) may be ap-
propriate in this case if the magnetic field B in
the equation is replaced by H/(2j +1). Then the
excitation condition (10) is rewritten as

which coincides with the observed result Eq. (1).
The voltage steps in the current-voltage char-

acteristics have also been observed for super-
conductive thin wires and whiskers with diameter

In the crossed fields the order-parameter varia-
tion moves with the fluxoid velocity cE/H. There-
fore, the critical state of the quasiparticle exci-
tation is
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New measurements on P-brass reveal an anomaly in the thermopower in the vicinity of
the order-disorder phase transition. A simple analysis, which is applicable to a wide
class of phase transitions, suggests that the anomaly arises from the scattering of con-
duction electrons from short-range critical fluctuations and that the thermopower can,
in principle, provide a direct measure of correlation functions.

A number of advances have been made recently
in our understanding of transport properties in
metallic systems near critical points. ' One of
the more important of these was the clarification
by Fisher and Langer' of the vital role that short-

range spin fluctuations play in the scattering of
conduction electrons. We suggest that the Fisher-
Langer approach can be extended in a simple way
to describe the anomaly in the temperature de-
pendence of the thermopower for a wide class of


