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Critical behavior and exponents above the ~-transition points in charged and neutral
Bose systems are examined with emphasis on the correlation of density Quctuations.
Exponents are calculated with Wilson's expansion methods for arbitrary d to O(1/m),
where d is the dimension and m the number of components of the Bose field. Some re-
sults for arbitrary m to O(s2) (e =4-d) are also obtained.

I. Introduction. -The behavior near the A, -tran-
sition temperature T, of a charged Bose gas has
been of considerable theoretical interest. " In
this note we examine the critical behavior above
T, with the newly developed methods of Wilson. "
We report results on critical exponents for arbi-
trary d to O(l/nt), and also those for arbitrary
m to O{e') (e = 4 -d). Here d is dimension and m
is the number of components of the (complex)
Bose field. Those readers who are interested

only in exponents for neutral systems may go
directly to Sect. D and then skip Sect. III.

A charged Bose gas is a system of bosons of
the same charge. A uniform rigid background of
the opposite charge is imposed to assume total
charge neutrality. We shall avoid time-depen-
dent effects and start with a model of a static
m-component Bose field a&y, j=1, 2, . . . , m,
interacting with a static Coulomb fi.eld cy. By
choosing appropriate units, the Hamiltonian is

K—= =g {r, h'+) Qa&y*a,y+h'cy*cT, +~py(cy~+c g) .

Within a small temperature range near T, , ro
is just —p/T, and all other parameters may be
taken as constants. py is the Fourier transform
of the boson density

P'%-=E Z asap asap+'%~
p

g= 1

~ and the effect of the charged background is ac-
counted for by imposing the restriction

c@=0, if 4 =0.

The terms in (1) involving cy are designed to re-
produce the usual e' gpyp*/ hCoulomb interaction
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The Coulomb force becomes infinite as 4 -O. Let
us define y. ', the irreducible part of )t(k), by ex-
cluding isolated Coulomb lines of momentum k:

X=X'(I+e'X'/k') '.
For formal discussion, we define the Coulomb-
field propagator D(k) as

D = (k'+ e'y') '.
82'' is thus the "self-energy" fox the Coulomb
field, As a result of the restriction (3), the iso-
thermal compressibility' is given by y'(0), not by
)t(0), and the specific heat is C~-y'(0)+const
Qear T~.

II. Results. —The exponents g and y for a
charged Bose system are shown to be the same
as those for a neutral Bose system. The differ-
ence between the charged and neutral cases ap-
pears through the density correlation functions.
Let y„(k) be the density correlation function for
a neutral Bose system, then we find for small
and for zero k

y„(k)-const —sgn(X)k", at T, ,

)t„(0)- const + sgn(o. ){T—T,), T», .

X(k) -k'

alway s ~ and

)t'(k)-const —k, at T, ,

)({)0const —-(T T,)— (10)

if A. , —e &0. Let d be the dimension of the system
and e —= 4-d. Using the technique of Ref. 3, we
find

t m —2, (m + 1) ~~1 3 15
km+4 (m+4)2&2 m+4

+ O(e'). (l 2)

between bosons. ' The reason for introducing ey
as an additional field will be clear later. The
quantities of interest are the density correlation
function y and the Green's function C:

(4)

The statistical average ( ~ ~ ~ ) is taken over the
density matrix [not to be confused with py in (2)]

Remember that m is the number' of components
of the Bose (complex) field. It is analogous to
n/2 for an n-component rea/ field. For large m,
we find'

X=4-d-8(2/d+d-3)S, m '+O(m '),

sinÃ (~z d —1)
m (2 d —1)B(-,' d —1, —,

' d —1) '

where B is the beta function. The exponent n can
be obtained from A, via the scaling law'

—o. =A,y/(2 —m).

Equation (12) shows that, for m =1, e small,
A. &0, so that (11) holds. For & =1, the e' term
barely turns A. positive. Thus, the sign of X is
uncertain' for &=1, m =1. For m~2, (12) and
(13) indicate that A. =0 and (10) holds. The expan-
sion for A. and q in & has been given by Wilson'
and by Nickel. ' Vfe give the large-m expression
here:

y=(2d-I) '(1-3m 'S,)+O(m '),

ran=2(4/d —1)m '8, +O(m '), 2&d&4.

III. Integrated density matrix and effective
Hamiltonian. —The density matrix given by (5)
specifies the probability distribution for ay and
cy for all k. It exhibits the interactions in the
microscopic scale clearly, but its implication for
lax ge-scale behavior is unclear. Since only field
variables of small k are of interest for critical
behavior, we integrate p over all those ag and
cy with k &A, where A ' is much larger than the
microscopic size, but still small compared to
the correlation length (. The integrated density
matrix p', which defines a new Hamiltonian K',

p' ~exp(- 3C'),

is exactly equivalent to p as far as ay, cg with
k' &A al e concerned. coQtains only these vari-
ables, but its appearance is very different from
K. In the diagram language, X' contains terms
shown in Fig. 1. The shaded areas are effective
coupling constants. They represent all diagrams
with the specified external lines of momenta less
than A, but with all internal lines hating magen-
ta larger than A. The last fact guarantees that
these coupli. ng constants are nonsingular at T,
for external momenta much less than A and can
be expanded in powers of the external momenta.
Furthermore, s' (the second diagram in Fig. 1,
which is a self-energy term for the Coulomb
field), is positive, because it 18 an average of a,
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FIG. l. Effective coupling constants for fields of
momenta less than A due to fields of momenta greater
than A. Saw-tooth lines denote the Coulomb field and
solid lines, bosons,

FIG. 2. Dj.agrams for y for the perturbation calcu-
lation. (a) Terms up to O(e ). (b) Terms up to O(1/m).

positive quantity (i.e. , e pypy with a-„,c~, q &A excluded in the definition of pg and in averaging). We
%'rite, following Pig. 1~

X'= Q (r,'+k') Jag*a,.g+ (s'+k')cg*cg+~ py'(cg*+c g)+ 2u, py'p y,
A&A g =1

+ Z I c%*c%' cR %'+'''
e'&A

pX'= Q -P a,p*a,p,%.
i=i@,)p+%i(A

The reason for treating the Coulomb interac-
tion as a separate field should now be clear:
Otherwise, the new coupling constants would
still be singular.

Even though X' looks far more complicated
than K, it tells qualitatively the behavior aver-
aged over a scale A '. In particular, the appear-
ance of s' removes the 1/k' Coulomb singularity,
and there is no longer any long-range force. The
model defined by K'is just another model for a
neutral Bose system, provided that the restric-
tion (8) is removed. Now we invoke the univer-
sality hypothesis and conclude that the critical
behaviors implied by K' with the restriction (3)
removed are those of a neutral Bose system.
The correlation functions so calculated (denoted
by )(„and 6„)are of course not quite the same as
y and G, but the connections among them are not
hard to establish.

The only difference between G„and G is that
(''„ includes a term proportional to (e"/s')x (bo-

I son density) (i.e. , a "Hartree" term) in its self-
energy, but G does not because of the restriction
(3). This term can be absorbed as a correction
to r, ' and will affect the transition temperature
but not the exponents. Thus, the exponents q and
y are the same as those in the neutral case since
they are directly obtained from G.

The connections among the density correlation
functions are less trival. Note that py' is not the
same as pg. Equation (19) shows that py' in-
volves two boson lines of momenta less than A.
Thus, any diagram for y„can be separated into
two pieces if we cut two such boson lines. We
now write the Coulomb-field self-energy as

~2~/ sit + 'Q

where s" (including s') is the sum of all self-en-
ergy diagrams which cannot be separated by cut-
ting two boson lines of momentum less than A,
and II is the rest. We then sum all corrections
to the boson-Coulomb-field vertex which cannot
be separated by cutting two boson lines. Let this
sum plus e' be e". Simple counting shows that

8" y„=II —IIDII,

e2~ = s"+0 —s "DII —IIDs" —IIDII =k2(s" i II)D

Eliminating II,D from (7), (21)-(23), we find the desired expressions for )(, )(' in terms of )(„:
e')(I = s»[„I —(e»~'/si~~))( ] '

jp2 8 If 2 j.
8 g=k, 1+—I—s" s"

(21)

(22)

(23)
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For our purpose, it is sufficient to know that e" and s" are finite constants at zero momenta and at T, .
IV. Calculations. —To O(e ), (8) and (12) can be verified by evaluating the diagrams shown in Fig.

2(a), using techniques of Ref. 3. The details are given elsewhere. '0 The O(1/m) calculation goes as
follows. For large m diagrams with more closed loops will be more important. Taking the effective
coupling constant u to be of O(1/m), correlation functions can be computed order by order in 1/m in
a similar fashion as the & expansion. To see the loops explicitly we express u as a dashed line in Fig.
2(b). The first diagram in Fig. 2(b) is just a. geometric series:

mli, (1+mull, ) '.
For small k, II,(k)-k ', which blows up as k-0. Equation (25) can be expanded as

m[(mu) —(m~) 'll, '+(mu) 'II, '+ ~ ~ ~ ].
Thus, the first two terms have already the form

const+ const'k ~,

with A. =4-d. To compute the next order term, we need

II'(I +mull ) = (mu) II 'll'+ ~ ~ ~,

(25)

(26)

(27)

(28)

where II' is given by the rest of Fig. 2(b), where each wavy line is a factor u(1+mull, ) '. Apart from
an overall factor, the contributions of the diagrams in Fig. 2(b) are, respectively,

)(„-const —k' + 4m 'S~k' "(ink+ const) + 4(4/d —I)m 'S~k' (ink+const)
I

+8(d —3)m 'S,k' '(ink+const)+const, (29)

which leads to (13). The calculation of A. and 7) is similar and will be described elsewhere. "
With the information we now have for the neutral system, we can obtain y' and y for the charged

system via (23) and (24). Case 1. If A. &0 [and thus —n &0 by (14)] )(„(0) is a finite constant at T, .
Without divergence, we can choose a small enough A to make y„small enough so that the denominator
of (23) is positive and (10) follows. Case 2. If X, —e are negative, )(„(0)-~at T, , and (11) follows
from (23). Since our results indicate that X is unlikely to be less than -2, (9) should always be valid.
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