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the quadrupole coupling data so that the molecu-
lar orbitals for these cases are expected to be
correct. Also, the tetrahedral case of YIG has
been taken instead of the octahedral case since
the experimental data of the isomer shifts in YIG
(tet) and Fe,O, are not as close as in YIG (oct)
and Fe,0,; consequently, the error introduced in
the calculation will be smaller. Thus, using
6(Fe,0,) =0.047* and 8(YIG (tet))=0.032'° (in units
of cm/sec) and the corresponding calculated p,’(0)
from Table I, one gets K,=-0.01496a,® cm/sec
and C = - 14,649qa,"°.

Knowing K, and C one next calculates 3 for all
the other cases from the calculated p,’(0) (Table
I). The values of 6 so obtained are also listed in
Table I together with the experimental results®!?
for the cases under consideration. The errors in
the calculated values of 6 have arisen from the
uncertainties in the crystal-structure data as re-
gards the ligand distances a, which are required
for the evaluation of the overlap integrals and the
ligand functions [see Eq. (4)]. It should be noted
that the calculated & for YIG (oct) gives perfect
agreement with the experimental results which
proves the consistency of the method. The calcu-
lated values of 6 in other cases also agree per-
fectly with the experimental data (see Table I)
within the experimental errors except for GAIG
(tet) where the deviation is rather large.

From the deduced value of K it is important to
extract information regarding the relative change
in the charge radius, 6R/R, of the Fe* nucle-
us. Using S'(Z)=1.29,° R=1.24'% F (A being the
atomic number), one obtains 6R/R =-4.11x107¢,

a result close to the value'® —4x107* obtained by
Simanek and Wong'* from the pressure depen-
dence of the isomer shift in KFeF, and the value’®
-3.9x107* as suggested by Goldanskii.!® For the
sake of comparison we also give the result'® 6R/R
=-1,4x1072% as derived by Walker, Wertheim,
and Jaccarino.*
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Linear Magnetoresistance and Anisotropic Quantum Fluctuations
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We propose a theory which accounts for the linear magnetoresistance found in the trans-
verse and longitudinal components in various metals. The theory is based on the exist-
ence of quasiperiodic static fluctuations, which have the anisotropy of the lattice and may
be due to electron-phonon and/or electron-electron interactions. The fluctuations pro-
duce no noticeable change in the static properties of the metal but produce the dominant
linear increase of the resistance at high magnetic fields.

The phenomenon of linear magnetoresistance
has been in the literature for many years.! It
has been found in several metals (e.g., alumi-
num, indium, the alkali metals) of which potas-
sium can be considered the clearest example.?

124

The linear increase of the transverse and longi-
tudinal resistances, as the magnetic field strength
H increases, seems to violate the general be-
havior of the magnetoresistivity tensor in the
limit H -, w, 7> 1, as predicted by Lifschitz



VOLUME 29, NUMBER 2

PHYSICAL REVIEW LETTERS

10 Jury 1972

and his collaborators® and as verified experi-
mentally for most metals.*

The general features of the experiments can
be summarized as follows: (i) The effect appears
in those metals with no open orbits and such that
as H—o, the Lifschitz theory predicts a saturat-
ing behavior; (ii) the linear behavior is found
for many experimental geometries and for var-
ious methods of measuring the resistance; (iii) it
appears for the longitudinal and transverse com-
ponents of the resistivity tensor; (iv) the linear
behavior is present for magnetic fields between
approximately 5 and 110 kG (this is equivalent
to w,T varying typically between 10 and 350);
(v) even at the higher fields at which the experi-
ments have been performed (= 100 kG) the linear
increase continues unchanged with no tendency
to saturation or any other departure from linear-
ity; (vi) the dimensionless slope

g=2p/P, (1)
weT
is characteristically a small number of the order
of 107* to 10°2; (vii) the slope S seems to be
quite sensitive to sample preparation and han-
dling, especially to strains.

Several theoretical explanations for the phe-
nomenon have been put forward. They are in
general of two kinds: morphological or intrinsic.
The morphological (geometrical) explanations
are based essentially on the geometry of a given
experiment, the linear term in the magnetoresis-
tance arising from specific boundary conditions
in the solution of Maxwell’s equations®® or from
discontinuities or macroscopic variations of
some constitutive parameters such as local den-
sity of electrons, crystallite orientation, etc.
The fact that the linear behavior is found in all
samples—regardless of shape, contacts, and
quality—makes all these explanations rather im-
plausible. In addition, the observation of the
linear term as predicted by most of these theo-
ries depends on the fulfillment of experimental
conditions (geometry of the leads, values of the
magnetic field, etc.) which are not realized in
practice.®

The intrinsic theories are of two subclasses:
structural or transport. Structural theories as-
sume that the metals for which linear magne-
toresistance is observed are not normal metals
in the usual sense: They have either strong spin
correlations” which effectively produce a double
periodicity in the lattice and the appearance of
lattice-related energy gaps, or they are metals

whose ground state is defined by a spin-density
wave or a charge-density wave.® In this last
case energy gaps also appear but they are essen-
tially attached to the electronic Fermi surface
and are therefore in general incommensurable
with the lattice periodicity. The drawback of
these theories is that they give a change in equi-
librium properties which should be observable
in other experiments, e.g., the de Haas—van
Alphen effect. Such is definitely not the case.®
The intrinsic transport theories propose vari-
ous kinds of scattering mechanisms which cannot
be incorporated in a relaxation-time approxima-
tion. One such theory, the so-called “hot-spot”
model, requires strong scattering probabilities
between well-defined “spots” on opposite sides
of the Fermi surface. If the scattering rate on
the “hot spots” is given by 1/7, and the normal
relaxation time in the rest of the Fermi surface
is given by 7, then in the region w,7>1,w T
«1, the resistivity tensor exhibits a linear be-
havior such that S, given by (1), takes the form

S=KR(1-Q)1-2(1-Q)Q]™, @

where K is a numerical constant of the order of

1 which depends on the geometry of the Fermi
surface, v is the fraction of electrons participat-
ing in “hot-spot” scattering (i.e., proportional

to the area of the “hot spots”), and @ is the
probability that an electron traveling on the
Fermi surface under the influence of the mag-
netic field and entering a given “hot spot” emerg-
es at the opposite side of the Fermi surface. In
order to have a constant, magnetic-field—-inde-
pendent S, @ should be also magnetic field inde-

. pendent. Young'® proved that this is so only for

w,T <« 1, in which case @ =0.5. Since S is ex-
perimentally a very small quantity and constant
up to very high fields, this theory can only ex-
plain the experimental results if the hot spots
are extremely small (v «1) and extremely hot
(w,T <1 for say 100 kG) which is physically un-
reasonable.

We would like to propose here a new mechan-
ism which can yield a linear magnetoresistance
and be consistent with the experimental facts
(i) to (vii) mentioned above. It is an intrinsic
transport mechanism which can be easily con-
nected to Young’s hot-spot theory. From a prag-
matic point of view, the most serious problem
in Young’s approach is that the solution of Boltz-
mann’s equation with localized scattering cannot
give at w, T <1 a value of Q different from 3,
and there is no range in magnetic field other than
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w,T <1 for which @ is essentially constant, i.e.,
magnetic field independent.

If the problem is now faced not as a transport
scattering problem, but rather as a quantum-
mechanical tunneling problem, a completely dif-
ferent result emerges. For an electron (mass
m, charge —¢) moving in a constant magnetic
field parallel to the z axis and under the influence
of a quasiperiodic potential V(x) of wave vector
é = cg’ 0’ O)a

Vix)=3D(x = x,)(V,e* + V *e ™ i6%), (3)

where D(x —x,) is an envelope function [D(0)=1]
chosen to be of the form

D(x)=exp[ - 7Px?/4] @)

and centered about an arbitrary point x,, a
straightforward calculation, following Pippard,™!
yields for the maximum probability of transition
@ from K to K+§ across the Fermi surface

(IKI= K+l =Fky),

Q= @, 2+H*/H2) %, (5)
where

Ho=imm2c|V,|*/eR|k k|, (6)

Qo= (m2|V, |m/1Pnk,| 2. (7)

Formula (5) is valid if @ < 1. It can be easily
recognized that H, given by (6) is the usual mag-
netic breakdown parameter,''? which for typical
periodic potentials of a lattice takes values from
10 to 10° G. According to (5) the tunneling prob-
ability @ is a constant equal to @, for values of
field H <H,/Q,, and it takes the usual magnetic
breakdown form?*3

Q=H,/H

for H>H,/Q,. If we take the conservative val-
ues @,=0.01 and H,=10* G, @ is a small con-
stant quantity @, up to values of H#=10° G. This
would yield a linear magnetoresistance with a
slope of order v@Q, for values of H up to about a
million gauss, and a change to saturation from
there onwards. Even if v=1, the small-slope
linear magnetoresistance can be obtained. It is
therefore not necessary to have small “hot spots”
and extremely strong scattering to satisfy the
conditions found experimentally.

Two points are worth emphasizing: (a) The
results (5)—(7) are essentially independent of the
particular choice of the envelope function (4);

Q, as given by (7) can in general be interpreted
in terms of the value at the origin of the Fourier
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transform of D(x). (b) The results (5)-(7) are
only functions of |V,|, i.e., independent of the
phase of V,. We can now think of a statistically
fluctuating potential such that the ensemble aver-
age (V,) is zero but such that (V,V *) #0. Such
a fluctuating potential would yield the same re-
sults (5)—(7).

Although we have shown explicitly the case of
a scattering quasiperiodic potential, it can be
inferred that the same effect should arise from
static quantum-mechanical fluctuations in the
ground state of the electron gas in the crystal.
Such fluctuations, in order to explain the linear
magnetoresistance, should be (A) anisotropic
over the Fermi surface and (B) coherent over
a length ~1/7 in space and such that 1 <g.

The origin of such coherent, anisotropic quan-
tum-mechanical fluctuations could be (I) elec-
tron-phonon interactions; (II) electron-electron
interactions.

In case (I) the virtual emission and absorption
of a phonon and the zero-point vibration in the
phonon modes can easily provide the kind of
effect we are expecting here, in which the vir-
tual umklapp contribution yields the expected
quantum “hot spots” for those regions of the
Fermi surface which approach the Brillouin zone
boundary.

In the case II, the lattice potential (or the true
Bloch states) should be accurately taken into ac-
count, since the anisotropy in the electron-elec-
tron interaction (the only part that contributes
to the magnetoresistivity) can only appear through
the influence of the lattice.

Either case looks like a suitable candidate to
explain quantitatively the experimental results:
Both mechanisms are strongly strain dependent
and they yield, in principle, values of similar
order of magnitude. For the parameters of
potassium (t;=0.73 A"! €.=2.1eV) and with
1V,1~0.01 eV and 1/7~20 A, we obtain Q,~ 102
and H,~10* G. This corresponds to fluctuations
over 5 to 10 lattice sites with values of the aniso-
tropic component of the fluctuating potential at
its maximum of about 3i; of the Fermi energy
and & of the value of the (110) Fourier component
of the lattice potential.®

Finally, since the proposed mechanism trans-
fers electrons back and forth between regions
of the Fermi surface which are widely separated,
it does contribute equally to a linear increase in
longitudinal' and transverse components of the
magnetoresistivity tensor. It does not change
appreciably the energy spectrum of the electron
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quasiparticles!® and, except for the usual Dingle
contribution to the amplitude, it does not change
the de Haas—van Alphen spectrum.
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A two-band model of a solid is presented which exhibits simultaneous first-order met-
al-nonmental and antiferromagnetic phase transitions in the Hartree-Fock approximation.

As originally envisioned by Mott, a first-order
metal-nonmetal (MNM) transition should occur
with changes in the interatomic distances.? A
surprisingly large number of transition-metal
and rare-earth compounds exhibit some type of
MNM transition. These transitions are generally
observed with changing temperature rather than
changing pressure, and it is not yet clear that
these transitions are true Mott transitions. A
large number of these MNM compounds have two
types of electronic states (e.g., s-p or d bands
for the transition-metal chalcogenides) which can
participate in the conduction process. It is our
opinion that the existence of the two types of elec-
tronic states is of basic importance and should
not be ignored.

Several MNM transitions (e.g., the transitions
in NiS and V,0,) are accompanied by a first-order
antiferromagnetic transition.' It has been sug-
gested that this type of transition can be explained
in terms of a large-amplitude spin density wave
(SDW).® If the energy gaps resulting from the
antiferromagnetic SDW’s are large enough, an
insulating antiferromagnet will result. However,
a MNM transition will occur at the Néel tempera-
ture only if the magnetic order disappears sud-
denly, and simple SDW theory predicts a second-
order Néel transition. Furthermore, the validity
of the SDW approach is not clear for interaction
strengths large enough to produce an insulating
magnetic state.

As an alternative to SDW theory, we consider
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