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A proof of the Adler-Bardeen theorem is given with the aid of the Callan-Symanzik
equation.

The recent realization that the processes y-3& and 2y-3& will provide basic information' about the
partially conserved-axiaI-vector-current (PCAC) triangle anomaly' has provoked new interest in this
subject. If the anomaly is to provide a test of the relevance of the renormalized perturbation series to
hadron physics, it is clearly essential that the value of the anomaly remains the same up to any finite
order in perturbation theory. ' I et us elaborate. Consider a perturbative calculation of the amplitude

It ~„„(k,q) =i jd'x d'y e '(""'")(0
i T 8A(0) Vq*(x) Vp*(y) i 0) =

eq „g,k q f(k' q' kq)

in any renormalizable quantum field theory with fermions and a partially conserved axial-vector cur-
rent. This theory may be, for example, quantum electrodynamics, or the 0 model, or a quark-gluon
model. [In what follows the discussion is given for quantum electrodynamics (QED). It is straightfor-
ward to modify the discussion to a form appropriate for other theories. ] The notation V„ indicates
that when calculating Bz,», we omit those diagrams in which the vector current V& = p,y&g, hooks even-
tually onto a photon propagator. 4

The theorem alluded to above then states the following: To any finite order in perturbation theory,
f(0, 0, 0) is given by the basic fermion triangle graph. This is an extraordinary assertion for it tells us
that PCAC and gauge invariance imply the existence of a spectacular cancelation among the infinite'
collection of Feynman diagrams, thus providing a unique opportunity to confront renormalized pertur-
bation theory with data. ' Moreover, this theorem provides a springboard for several other deductions
on the behavior of field theories. '

A constructive proof of this important theorem was given by Adler and Bardeen. " In this paper we
propose an alternative proof. This paper also serves to illustrate the Callan-Symanzik" equation at
work, So let us begin by writing down the version of this equation appropriate for current correlation
functions:

8 8
(o.)m +P. (o.) — — Rc„„(k,q) = —2RsD„„(0,k, q) +Rc„„(k,q)—.
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„„(p,j, q)=-.Jd' d' dy '~" ""»{OtTS( )sa(0)V„*( )V„*(y)to) {3)

and 8=2imogoy, . (All unrenormalized quantities are denoted with the subscript 0.)
We now sketch the derivation of Eq. (2). Let R»„' and R~»' be the unrenormalized counterparts

of RL)p p and 8 happ p. Then by defln1t1on

(4)

i(u + q) "R„„„(0,I, q) = R „„(O,I, q) - 2R,„„(I,q),

m, (el&m, )R,„„'(u,q) =-,'R „„'(0,a, q) +R,„„'(u,q).

The partial differentiation in Eq. (4) is performed with the bare coupling constant the cutoff held fixed.
The term R»„' appears in Eg. (4) since &A explicitly depends on m, . We now recall that the operators
8A, 8, arid V&* are in fact cutoff independent, thanks to the PCAC and conserved-vector-current Nard
identities. '" Thus R~„„'(k,q) =R~&„(k, q) and R~&„(p,k, q) =RE»„(p, k, q). Introducing the defini-
tions X(o.) =-m, /m(&m/&mo) and p(u) —= m, &n/&m„we obtain Eq. (2). x{n) and p(o.) are clearly cutoff in-
dependent and depend only on o..

We now observe that 8z,» satisfies a Ward identity:

R,„„„(p, 0, q) = i fd4z dg d'y e '&~"~'"'{0
t rS (z)A ~(0) V„*(x)V„+(y) t 0). (6)

We next argue that the Ward identity in Eq. (5) is free from anomalies. As a consequence of crossing
symmetry and gauge invariance, any anomalous term in Eq. (5) must have the form ae» ~,k "q'. Since
absorptive parts satisfy normal Ward identities, ' a is a polynomial in the momenta. steinberg's theo-
rem" then shows that a =0 to any finite order in renormalized perturbation theory.

One is happy to note that the same expression appears on the right-hand side of Eqs. (2) and (6).
This enables the proof to proceed as follows. Expand Eq. (2) in powers of momenta. Such an expan-
sion certainly exists with some nonzero xadius of convergence since our fermion mass m does not van-
ish. Crossing symmetry implies that R ~z„„(0,0, q) = e» ~,(k —q) 'A(o) +terms higher order in momenta
as k, q-0. Gauge invariance, however, forces A(a) to vanish. The Ward identity in Eq. (5) now tells
us that 1n the momentum expans1on

„„(0,a, q)-2R, „„(I,q) =e„„,.I 'q 3(c)+- ~,

the coefficient of expansion B(n) =&{n)=0." Sim-
ple dimension counting shows that f(0, 0, 0) is in-
dependent of m. Referring to Eq. (2) we learn
that

P(n)(d/dot)f(0, 0, 0) = —2 B(n}= 0. (6)

Hence+0, 0, 0} is independent of o.. This com-
pletes the proof. '

The proof just given holds for theories with only
one nonvanishing mass, such as @ED. It is easily
generalized, however, to theories with several
nonvanishing masses, the reason being that the
number of Callan-Symanzik equations increases
with the complexity of the theory. For example, "
in massive vectox'-boson theory with a fexmion
mass m and a vector-boson mass p., we would
have two equations of the type

Bg Bg
X—+P—=0, (9a)

~rE g
, C ~CX'—+P' —=0. (Qb)88 Bg

t Here z -=p'/m', and c(z, q) is defined by the ex-
pansion R»y eppy~k q c(p /m, g) as k~ q~ 0.
A, , A, ', p, p' are functions of p'/m' as well as g.
Clearly, we reach the same conclusion as befox'e,
namely that c( p,'/m', g) does not depend on g. It
then follows that c(p,'/m', g) does not depend on
p'/m' either.

In applications" so far, the right-hand side of
the Callan-Symanzik equation is usually eliminat-
ed by appealing to Weinberg's theorem and going
into the deep Euclidean region. In this paper, we
observe that the right-hand side of the Callan-
Symanzik equation for R~» [Eq. (2)] appears also
in a PCAC Ward identity [Eq. (6)]. This informa-
tion turns out to suffice for our purposes. We
note here that this feature is quite general.
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