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A theory of the laser saturation spectroscopy experiments of Hansch ef al, is present-
ed which is applicable at high values of the saturating laser beam. Phase- and velocity-
changing collisions are taken.into account,

Recent experiments by Hiinsch, Shahin, and Schawlow' ® demonstrate the usefulness of the laser-
saturated absorption method as a spectroscopic technique. In their work, laser waves of the same fre-
quency traveling in opposite directions pass through an absorption tube containing the gas to be studied.
One traveling wave, the saturator, is of high intensity; the other, the probe, is very weak. When the
frequency of the laser is tuned near the frequency of the atomic transition, the probe-beam intensity
exhibits a resonance with a width characteristic of the natural width of the atomic transition.

The purpose of this paper is to present a theory of the experiments of Refs. 1-3. The shape of the
resonances is derived for the case of a three-level atom in which the two lower levels b and ¢ are con-
nected by the laser fields to a common upper level a. The problem is first solved iteratively in the
saturating field strength; in addition to the resonances at the atomic frequencies w,, and w,,, there is
a “cross-over” resonance at the average of these frequencies, which may! or may not? be inverted. A
noniterative solution is then obtained for the case of well-separated resonances, i.e., for w,, large
compared to the resonance widths; this solution is valid for large saturating field strengths. Phase-
and velocity-changing collisions are also included.

The present method is similar to one used previously to calculate the output of a high-intensity gas
laser.* The laser radiation is treated classically and the atoms quantum mechanically. The laser elec-
tric field is-assumed to be in the x direction and of magnitude

8(z,t)=E, sin(wt + ¢, — Kz) +E, sin(wt + ¢, +Kz),

where E, > E,; E, is the saturating field and E, is the probe field. E, and E, are assumed to be slowly
changing functions of 2.° The problem consists of calculating the macroscopic polarization of the atoms
produced by the field, P(z,t), which can then be related to the gain of the probe beam: If

P(z,t)=Re(id e -i(wt-K2) +iA2e-i(wt+Kz))’

then Maxwell’s equations give an intensity gain of (K/E,) Im(A,).
The problem is solved in the rest frame of an atom moving with axial velocity v,. The time-depen-
dent Schrédinger equation is

inav /ot =[H,+e8(z, t)x V.
Assume

Y =a(t)p,+b(t)p,+c(t)o..
The time dependence of the density-matrix components p,,=aa*, p,,=ab* etc., is given by

Paa=2a= (Va+ TdPuq+2 RE(1V 0 *0 o) +2 RE(iV 4 *Pac)s )
Pos=2p= (v5+ Tp)Pypp +BapPaa— 2 RE(EV 3 *0 ), (2)
Pas=—= (Yo +19 )P +EV 0p(Paa = Pop) = tPpc*Vacs (3)
Poc== (Vo +i0pc)Ppc = tPacV a™ + 1P ad*V ac» (4)

where V,;=-®,,8(z,t)/, and &,; is the matrix element of the electric dipole moment between states a
and j. The phenomenological terms —y;py;, where y; is the natural width of level 7, have been added
to account for the spontaneous decay of level ¢ to all other levels. Here, y“E%(y,- +v;). The equations
for p,. and p,. are gotten by interchanging b and c¢ in Egs. (2) and (3). In order to account for the exci-
tation of the atoms, e.g., by electron bombardment, A; has been added to p;;, where A; is the number
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of atoms per cm? sec excited to state i with velocity v,. p;; now stands for the number of atoms per
cm?® in state ¢ with velocity v,, rather than for the probability of state i, Velocity-changing collisions
are included by adding a term - I'; p,; to p;;, where I'; is the probability per second for an atom in
state ¢ to change its axial velocity by collisions.® Atoms coming into the velocity range near vy,asa
result of collisions with other atoms are neglected. Spontaneous emission from a to  and ¢ is account-
ed for by adding B4, 04, t0 Ppp and B, g, to b, Where B, is the spontaneous transition probability per
second, a—j. In the rotating wave approximation, we have

Vap=1Uge 1“4 (e K7y e " 1K), (5)
where

Vo= (- C o E,/27) exp(-igp,),
and

€=(E,/E,) expl- (¢, - ¢,)],

with a similar expression for V,.. Here, z is the position of the moving atom and is thus time-depen-
dent. If one substitutes

pabgvabe -‘w‘(gabe”“"” ehabe -““)
and
pbcE 'Oab*'uacfbc,

then in the limit € -0, Egs. (1)-(4) are satisfied by constant values of p,, = Pyp, frcr Zapy and kg, and
can be solved iteratively (in E,) to yield

i 1 1 B Yab
By E=——< 1,y = 2|0, % <——-—+—————Q—>———L—-
i Am{ a BTNy Y VeV By Ban*

18 Yae [Vl> (g _nge
-2[v,.[*n (—— —--a > + - - 6
act ae Yo' VYo' BaciBaa* (wbc +y bc) Ay Bgar™ ’ ©®)

where
Aajl Ew- waj - Kvs"'i')’aj, Anjzsw - waj +sz+i)/uj; 7£' Sy + ri’

Moy =Ng=N;=Ag/¥, = [kj +Baj(xa/72')]'yfl o

with j=b or ¢, and n,; the zero-field inversion density between states @ and j with velocity v,. The ex-
pression for %, is Eq. (6) with b~ c.
The macroscopic polarization is*

P(z,£) = [[2 Re(p o op®) +2 Re(p o8 1. ¥) Jdv,
so that the intensity gain for the probe beam in the -z direction is
Go(w) == (K/B)[|® 4| Re( [ gy v, + 1€ . [? Re( S godv )]

In the Doppler limit, integration over velocity gives the following expression for the gain at w minus
the gain for w -
ﬂ3/2E 2 [ r LR [
- = e fa T7b " Mab fa 7¢ T"ac
Gz(w) Gz(°°) W{erb,@abP Ye y'}” 7 Ba £(wab1 7ab) +Nge Io)ac‘47a Y')/,y 7 B c£(wac’ Yac)

a/’b alc

10 18] Moo LB ) (B0 | o (g e Yart i)

Ya")/b’ Ya'}’c’ 2 2

_l ‘(Pgblzlyngiz[Ngg[(w - wgg)whg - YEQ'YQc]_ Nac[(w - wgg)wgg +7§£72£] ‘ 7)
L wbcz +7’bcz (0) - wab)z +Yab2 (w - wac)z +Ya02 ’ (
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where
L£Q,y)=y/rl(w-8)2+y?],

and N,; is the total zero-field inversion density (atoms per cm?®) between states @ and j.

For N,,<0 and N, <0, the resonances at w,, and w,, are positive, since y,’ is always greater than
Bas OF B,.. However, the “cross-over” resonance can be positive or negative, depending on the sizes
of Bo/vy’ and B,./y.'.* For example, if b and ¢ are stable states, y,’=I', and v,/ =I',, so that the term
is negative for B,,/T',>1 and B,./T'.>1 (as well as for other cases, depending on the relative sizes of
N, and N,). The asymmetric term is small if w,,/y,, is large; however, it can be important for high-
precision measurements of w,, (see Ref. 2). The fractional shift in the resonance center due to this
term is of the order of y,,%/w ;W

If the resonances are well separated, then one can calculate each resonance separately, since atoms
with a given v, can participate in only one kind of transition, depending on the value of w. Itis then
possible to calculate the shapes of the resonances noniteratively, for large values of E,. For the case
of w near w,,, the Lorentzian factor in the first term in braces in Eq. (7) becomes

(1 +8aab) -1/2£(wab3 %‘yab[l + (1 + Saab)l/z])s

where

P €4 PE? vo' +v4 =By
“ 16m* Vi’ Yaj )

The power broadening of the cross-over term can be calculated by considering the case w 23(w,,
+w,). In this case, the Lorentzian factor in the part of the third term in braces in Eq. (7) proportion-
al to N, becomes

(1 + Saac) -llz‘f’(%(wab + <""ac)’ —é_[)/ab +7ac(1 + saac)llz] )7

and the part of that same term proportional to N,, is multiplied by a similar expression with ¢ —b.
Thus the cross-over resonance is a sum of two Lorentzians of different widths and heights.

Phase-changing collisions can be included by adding a term d u,,j(t)/dt to w,;. By using an approxi-
mate averaging method,* one finds that the probe gain is given by the expressions derived previously
ify,;, w,; and a,; are replaced by 7,;, @,;, and &,;, respectively, where

7nj =7aj +7p<1 - COS(Paj>, —(Eaj = waj +7p<Sin(Paj>7 Efaj = aaj(?aj/?aj)’

with y, the reciprocal of the mean collision time, and ¢,; the phase change per collision for the a —j
transition. Thus, for example, the resonance at w, has a width of

_ ~ _ loalPE2(1 1 B 1
1+(1+8a, /2] - 1+|:1+.__¢1L__J._ — e Taeb ) __ 1/25
'Vab[ ( b) ] Yab{ o2 Ya Vs Va6 ! Ve
We have recently learned of a paper by Baklanov and Chebotaev® which treats the two-level version

of our theory, with somewhat differing results. I should like to thank Dr. T. W. Hinsch for suggesting
this problem to me.
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