
VOI.UMz 29, NUMasR 17 2$ Gcxoaza 1972

Theory of Laser Saturation Spectroscopy
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A theory of the laser saturation spectroscopy experiments of H'ansch et al. is present-
ed which is applicable at high values of the saturating laser beam. Phase- and velocity-
changing collisions are taken. into account.

Recent experiments by HKnsch, Shahin, and Schawlom' ' demonstrate the usefulness of the laser-
saturated absorption method as a spectroscopic technique. In their work, laser waves of the same fre-
quency traveling in opposite directions pass through an absorption tube containing the gas to be studied.
Qne traveling wave, the saturator, is of high intensity; the other, the probe, is very weak. %'hen the
frequency of the laser is tuned near the frequency of the atomic transition, the probe-beam intensity
exhibits a resonance with a width characteristic of the natural width of the atomic transition.

The purpose of this paper is to present a theory of the expel iments of Refs. 1-3. The shape of the
resonances is derived for the case of a three-level atom in which the two lower levels 5 and c are con-
nected by the laser fields to a common upper level a. The problem is first solved iteratively in the
saturating field strength; in addition to the resonances at the atomic frequencies v, ~ and e„, there is
a "cross-over" resonance at the average of these frequencies, which may' or may not' be inverted.
noniterative solution is then obtained for the case of well-separated resonances, i.e., for v„ large
compared to the resonance widths; this solution is valid for large saturating field strengths. Phase-
and velocity-changing collisions are also included.

The present method is similar to one used previously to calculate the output of a high-intensity gas
laser. 4 The laser radiation is treated classically and the atoms quantum mechanically. The laser elec-
tric fieM is assumed to be in the x direction and of magnitude

h (z, t) =E, sin(art + y, —Kz) +E, sin(&A + y, +Kz),

where E,»E„E,is the saturating field and E, is the probe field. E, and E, are assumed to be slowly
changing functions of z. The problem consists of calculating the n-'acroscopic polarization of the atoms
produced by the field, P(z, t), which can then be related to the gain of the probe hearn: If

then Maxwell's equations give an intensity gain of (E/ E) Im(A, ).
The problem is solved in the rest frame of an atom moving with axial velocity u, . The time-depen-

dent SchrMinger equation is

Ra%/at = [H, +eh(s, t)x]4.

Assume

@=a(t)y, + b(t)yb+C(t)CP, .
The time dependence of the density-matrix components p„=-au*, p„=-ah~, etc., is given by

p„=h, —(y, +I',)p„+2Re{iV,„*p„)+2Re(iV.,*p„),

Pbb hb (Yb+ ~b)pbb+~abpaa 2 Re(~Vab pab)t

Pab (~ah+i+ah)pab+~Vab(paa Pbb) bPbc Vac~

Pbc (Vbc+b+bc)pbc bPacVab +bPab Vac&

where V,&

-=—N,z{&, t)/~, and t„is the matrix element of the electric dipole moment between states a
and j. The phenomenological terms —y; p«, where y, is the natural width of level i, have been added

to account for the spontaneous decay of level i to all other levels. Here, y, &
=- a(y;+y&). The equations

for p„and p are gotten by interchanging 5 and c in Eqs. (2) and (3). In order to account for the e ci-
tation of the atoms, e.g. , by electron bombardment, A. , has been added to j«„where A.; is the number
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of atoms per cm' sec excited to state i with velocity v,. p«now stands for the number of atoms per
cm in state i with velocity v„rather than for the probability of state i. Velocity-changing collisions
are included by adding a term —I'& p« to p«, where I', is the probability per second for an atom in
state i to change its axial velocity by collisions. Atoms coming into the velocity range near v, as a
result of collisions with other atoms are neglected. Spontaneous emission from a to b and t." is account-
ed for by adding P„p., to p» and P„p„to p„, where Pz is the spontaneous transition probability per
second, a —j. In the rotating wave approximation, we have

y gg e '] Qft(e lEz+ ~c IKg)

&,,=- (-O'„E,/N) exp(- iy,),

a = (E,/E, ) exp[- i(cp, —p, )],
with a similar expression for V„. Here, s is the position of the moving atom and is thus time-depen-
dent. If one substitutes

then in the limit e-0, Etls. (1)-(4) are satisfied by constant values of p„-p», f~„g,» and h,» and
can be solved iteratively (in E,) to yield

n„-2/8„('n„(, +
g52 II ~a ~l +a +5 Obl abl

I

1 P„&] y„j&„[' n„n„)
ysyo& &.n&.n (&»+»») &.si &.cg i

Egg~: (d —(dog —Kg) +$Pgg» A~g2: QP —
QPeg +Eg + gg gy Pg:-gg + I gy

n„=-n, -n, =X,/y, ' —[X, +p„(Xg y, ')] y,

' ',

with j =5 or c, and n„. the zero-field inversion density between states u and j with velocity v,. The ex-
pression for h„ is Eq. (6) with 5- c.

The macroscopic polarization is'

P(z, t) = 1[2 Re(p„6'„*)+2Re(p,g'„*)]du,
so that the intensity gain for the probe beam in the —z direction is

G,(~) =- (E/@)[16'.&I' Re(ga.&d~. + 16'..(' Re(ja.,d&.)]
In the Doppler limit, integration over velocity gives the following expression for the gain at m minus
the gain for m - ~ "

G ((u) —G ( ) =- ' N (6' i'y' y' "Z((u y )+N id' i' ' y' "S(a) )

+I~ I*ltp I*& l~' +& ' - & " - " -)Cb aC OC ~ p g Cb 2 ' 2Xg YQ +0 Yc
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where

and N, z is the total zero-field inversion density (atoms per cm ) between states a and j.
For N„&0 and N„&0, the resonances at co„and ~„are positive, since y, ' is always greater than

P„or P„. However, the "cross-over" resonance can be positive or negative, depending on the sizes
of P,,/y, ' and t)„/y, '.' For example, if b and c are stable states, y~' = I'~ and y, '= I"„sothat the term
is negative for P„/I', & I and P„/I",&1 (as well as for other cases, depending on the relative sizes of
N, ~ and N„) T. he asymmetric term is small if u&„/y„ is large; however, it can be important for high-
precision measurements of &u„(see Ref. 2), The fractional shift in the resonance center due to this
term is of the order of y,~'/~, ~&a~,.

If the resonances are well separated, then one can calculate each resonance separately, since atoms
with a given v, can participate in only one kind of transition, depending on the value of ~. It is then
possible to calculate the shapes of the resonances noniteratively, for large values of E,. For the case
of ~ near ~„, the Lorentzian factor in the first term in braces in Ec[. (I) becomes

(I+8n„) '"Z((u„, ay„[1+(I+So.„)'~']},
where

The power broadening of the cross-over term can be calculated by considering the case ~ —= —,'(to, ~

+u„). In this case, the Lorentzian factor in the part of the third term in braces in Ec[. (I) proportion-
al to N„becomes

(1+8o.„) '~ Z(a((d, ~+&8„),a[y,~+y„(l+8Q„)'~ ]),
and the part of that same term proportional to N„ is multiplied by a similar expression with c—b.
Thus the cross-over resonance is a sum of two Lorentzians of different widths and heights.

Phase-changing collisions can be included by adding a term d p, ,~(t)/dt to tu, j. By using an approxi-
mate averaging method, 4 one finds that the probe gain is given by the expressions derived previously
if y,&, m, &, and n,&

are replaced by y„., 2„., and u,&, respectively, where

y„=y++yp(l —cosV ~), tdap Naz+r~(sin(s, &), n, &
= o.,z(y,&/y„),

with y~ the reciprocal of the mean collision time, and y„. the phase change per collision for the a- j
transition. Thus, for example, the resonance at ~„has a width of

2Q 2

ye ya ya ya yaa-

We have recently learned of a paper by Baklanov and Chebotaev' which treats the two-level version
of our theory, with somewhat differing results. I should like to thank Dr. T. W. HKnsch for suggesting
this problem to me.
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