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Linear polarization is shovrn to dominate circular polarization cross sections strongly
for high-order multiphoton ionization of atoms.

Experiments'2 on two- and three-photon ioniza-
tion of atoms have shown that circularly polarized
light gives larger cross sections than linearly
polarized light. Theoretical treatments" of low-
order multiphoton ionization are consistent with
these results. This has stimulated interest in
high-order effects with circular polarization.
Klarsfeld and Maquet' have found an upper bound
for the ratio of circular- to linear-polarization
cross sections for multiphoton ionization of at-
oms. The bound they find shows a strong dom-
inance of circular over linear polarization for
large N, where N is the multiphoton order.
Lambropoulose has pointed out the theoretical
simplicity of the circular polarization case.

It is shown here that a greatly improved upper
bound can be found for the ratio of circular- to
linear -polarization cross sections. This new
bound is very much less than unity for large K,
which thus reverses the earlier conclusions.
The strong dominance of linear over circular po-
larization for large N discourages the use of
circular polarization in experiments, and attenu-

(

ates the advantages attendant upon a simple theo-
retical analysis of circular polarization.

The analysis performed here w01 employ the
momentum-translation method, ' which is suited
to the treatment of high-order transitions, and
which gives simple, analytical results.

Klarsfeld and Maquet found ttheir upper bound
on the ratio of circular- to linear-polarization
cross sections by examining the ionization cross
sections from an initial 8 state to a final state
wl'th RngulRr momentum I ¹ This ls the Only

final state possible for circular polarization,
but for linear polarization there are &M+1 final
states allowed if N is even, and 2(N+ I) if N is
odd. The reason that Klarsfeld and Maquet's re-
sult is misleading is that E=N is the least impor-
tant of the many allowed states in the linear po-
larization case.

For intensity in the photon field not too high
for perturbation theory to be valid, the momen-
tum-translation method" gives a transition ma-
trix element for a central binding potential which
can be written as

(4&, lP ~l"4,)=f, d~p'ft&*(p)~i(p)f«F» &*(8,e)F,, *(8,V)(P ~)',

where P=x/a, is a dimensionless radius vector, p= i/I, a, is the Bohr radius, ' f is the polarization
vector of the ionizing field, P is a state vector, F, is a spherical harmonic, 8, y are spherical polar
coordinates, and the subscripts f and i refer to final and initial states. It is convenient to take the po-
lar axis of spherical coordinates along the propagation direction of the photon field for circular polari-
zation, while for lineax polarization it is better to take the axis along the direction of polarization.
For circular polarization,

(P. ~&)s —pN2- s/s sins 8 s4 is w

where the ambiguous sign refers to right-hand or left-hand cases. Linear polarization gives simply

(P. g)N —ps coss8

The case l,. =0 will be examined for the sake of simplicity. The subscripts f can be dropped from the
I&, m& quantum numbers, since there is now no ambiguity. There Rre two RngulRr lntegrR18 to be evR1-
uRtedy

A'= fdQF, *F,'2 "/'sin"8e''"~ (4)
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for circular polarization, and

A, = fdQ Y, *Yo cos"8

for linear polarization, where the subscript l on A in Eq. (5) refers to the final angular momentum
quantum number. The evaluation of the angular integrals is done more easily with the spherical har-
monics C, (8, y) than with the more conventional Y, (8, p), where C, =(4n)''(2l+1) '2Y, . Then
since

C,"(8,y) = —2 '/' sin 8e"~,

evaluation of Eq. (4) requires knowledge of (C,")~. This is given by the theorem

(C &1)B —(Nt)1/2[(2N 1) )t]-l/2C kE

which can be proven readily from the lemma

~) = N~/2(2N —1)

With Eqs. (6) and (7), Eq. (4) is
A'= (-1)"(2l+1)' '(4n) '(Nt)' '[(2N —1)!!]' 'Jdg C, +C„'~=(—1)'(N!)' '[(2N+1) tl]-

with the conditions l=N, m=+N. To evaluate Eq. (5), the expansion

cos"8 =Q.b.'"'C,'(8, y)

is useful, where

0, N —j odd or negative
zl 1

N- j even and non-negative.
(-,'N ——,'q)! (N+q+1)!

Equation (5) is thus

A, =Q &
" (2l+1)' (4m) 'f~nC *C '=(2l.+1) '

o'/o (o'/o„ (12)

where cr, is any of the partial cross sections for
angular momentum l.

One possible bound suggested by Eq. (12) is
realized if 0„ is employed on the right-hand side.
This is the simplest case, since then all depen-
dence on radial integrals cancels, and the ratio
of 0' to o~ is given simply by the angular inte-
grals, i.e.,

where j=l, nz=P.
If 0' is the cross section for ionization by.circu-

larly polarized light, and 0' is the cross section
for linear polarization, where all final angular
momentum states are included, then a bound on
the ratio is given by

r
which is the result of Klarsfeld and Maquet. '
Since (2N- 1)!!/N! behaves as 2"(mN) '/' for
large N, Eq. (14) suggests (but does not demon-
strate) a strong dominance of circular over linear
polarization for high orders. However, calcula-
tions of high-order multiphoton ionization of hy-
drogen by linearly polarized light have shown'

that, whereas many final angular momentum
states can contribute significantly, the state with
/=N scarcely contributes at all.

A more reasonable upper bound to find from
Eq. (12) should thus employ a relatively small
value of l for 0, . It is convenient to examine
I=0. A comparison of the angular parts alone is
striking. The ratio

Ala/A s (13)
A'—= (N+1)(N+1)!/(2N+1)!!A2 (15)

From Eqs. (8), (10), (11), and (13), the upper
bound on the ratio of circular- to linear-polariza-
tion cross sections obtained in this way is

behaves as (mN )' '/2~" for large N, which is
very small when N is 1arge, %hat is really need-
ed is the ratio

(x' o' (2N —1)!!
0 0~ Nf

(14)
lS'l

cr, l(R, II A,' ' (16)
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6t, =
g &p p"'ft, *(p)ft&(p);

R& and R; are final- and initia1-state radial wave
functions, the dependence of 8, on E arises from
(Rz, and 8'=6t„. The implication of Eqs. (12),
(16), and (15) is that linear polarization is much
more important than cir cular polarization unless
the radial integrals found from (17) can offset the
very small result of Eq. (15). An examination of
radial integrals involves explicit specification of
potential and wave functions which has been avoid-
ed up to this point. AII 'that ls needed however
is an indication for a simple (but realistic) spe-
cial case that the radial integral comparison wiII
not compensate the angular integral comparison
of Eq. (15).

Consider the ionization of a hydrogen atom from
the ground state to a Coulomb final state in the
limit as the momentum k of the ionized electron
goes to zero. This gives meaningful results for

t

E& (the energy of the ionized electron) such that

E& «Ez (where Ez is the ionization energy). This
inequality would generally be satisfied in high-
order photoionization. %ith a normalization
which gives a finite result as k -0, the initial™
state radial wave function is

R, (p)=2e ~

and the final-state wave function is

&,(p) = (2/p)'"~. „((6p)'").

2(@+1+2)!
l (2E+ 1) ~ 8+2, l +1/s( )t

where the function M„„(s)is a Whittaker function.
For /=N, Eq. (18) gives

while for l=O,

6!,=s '2(X+2)!~„„„„(2)- '„, — cos([6(&+2))' '- -'~),
2(W+ 1)![2(A!+2)]" x/g

8F

where the asymptotic form for large N is given
by the last expression in Eq. (20). The trigono-
metric function in (20) can never exactly vanish,
and will be small only under very special circum-
stances. If a typical value of the square of the
cosine function is taken to be ~, then Eqs. (19)
and (20) yield, in the large-N limit,

(21)

This is a very small result, and emphasizes
rather than compensates the small ratio given by
(15). Hence, except for very special circum-
stances, the final conclusion is that

O. f Of

0' {Xo

For the small-4 limit cited here, one can esti-
mate that the reversal from circular-polariza-
tion dominance to linear-polarization dominance
would occur for only slightly larger N values than
have already been investigated experimentally.

That is, the reversal might occur at about M=4
or 5.
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It is convenient to refer specifically to hydrogen

atom parameters. However, the arguments given here
are applicable to any single-electron atom with central
potential,
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