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TABLE 1. B(El), B(E2), and M&&, and energy-weighted sum-rule (EWSB)
limits.

(EWSB)

16.65
14.0
14.0

1
2+

0+

IV,0 + 5.0
990+300

2060 + 610

283 + 86
13900+ 4200
28700 + 8500

264
24900
28000

1.07 +0.32
0.56 +0.17
1.03 +0.3

'J iaaglj inunitae'F'fcr J =1, a(Z2) inc'F'fcr J'=2', and i~pi('in
F ford =0.

Units are MeV times units of I'.

ter. The resonance around 28 MeV also shows a
collective nature. %e have found the same kind
of resonances for the relatively spherical nuclei
"Fe, '"Sn, and '"Pb as well as for deformed"Sm. In contrast to the general relation 80A'~'

MeV for the peak energies of the giant dipole
resonances, the newly discovered giant resonanc-
es are described by 6u"' MeV and - )2''»
MeV, respectively.

The authors wish to thank Professor H. Ui for
his discussions and valuable advice. They are
also indebted to Professor G. A. Peterson for his
precise reading of the manuscript.
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Assuming that the low-lying states of doubly odd nuclei contain only the two lowest SU(4)
supermultiplets, I have derived the following lower and upper limits on the magnetic mo-
ments of 6Li, ~B*, and «SF, using only experimental data on superallowed Gamow-Teller
transitions: (0.800+0.016)P~-S( Li)-0.88pp, 0.65u~~y( OB*)~ 0.88u~, 0.66u~» p( 8F)- 0.8gpp. This shows that relativistic corrections to the magnetic moment of Li cannot
exceed 7.3%.

In a previous paper' I showed that the ground state of 'Li is an almost pure (T =0, 8= 1) state of
the lowest (100) SU(4) supermultiplet, ' consistent with good SU(4) symmetry.

The purpose of this note is to present rigorous lower and upper limits on the magnetic moments of
doubly odd nuclei under the assumption that SU(4) is a good symmetry and that the ground states do not
contain higher supermultiplets other than the (ill) supermultiplet. Thus, the ground states of BLi and
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'He can be expressed as follows:

$( Li) =xyo(S = 1, L = 0)+y po(S = 1, L = I) +zoo(S = 1, L = 2)+ Py~(S = 0, L= 1),

(('He ) = o 'p, (S = 0, L = 0) + P 'y, (S = 1, L = 1),

in obvious notation. The parameters are normalized such that

lxl'+ lyl'+ lzl'=1, I~l'+ IPI'=1, I~'I'+ IP'I'=I,

and they satisfy

lol'= lxl'+ ly'I'+lzl' lyl'= ly'I'+ IPI'

Consider

(0('He)
I Y, 'lg('Li)) = a'*xM, + P'*PM „

where

M, =(y, (S=O, L=O)IY, IP, (S=I, L=O))

and

M, =
& P, (S = I) L = 1)

I Y, I 0, (S = 0, L = I)) .

The simplest way to compute M, and M, is to proceed through the following sum rules:

(2T+I) '[g l&0TII Y.IlnT —1&l'+ (T+ I)-'L
1
(07 II Y, llnT&l'- T(T+ I)-'Z„l &0TII Y.ll nT+ 1&l'] = IT I, (I)

which is derived from the commutation relation

[Y, ', Y, ]=2T;
and

(2T+I) '[Z„l&OTIIY.IIEET
—»I'+Z„l(OT II Y.II~T) I'+Z„l(OTII Y.II~T+»I'] = l&OTI Y'IOT), (2)

This implies

I
~'IIx I+3 '"IP'IIPI ~ (I —~')'"

or

I
o" llx ~ (I —~')'" —3 '"IP'IIPI

Good SU(4) symmetry means that P' and P are small. Thus, (1 —~')'~' —3 '~'IP'IIPI is positive in most
of the observed superallowed GT transitions.

By squaring both sides of (3), one gets

(1 —p'+ l IPI') IP'I'--'. ~~(I —~')'"IPIIP'I —(~' p') -0— (4)

(where p = Iyl + Izl; Ixl =1 —p ). Inequality (4) can be satisfied if and only if

p'- (I+~'+ 3 IPI')p'+(~'+ 3IPI') -0-
iii2

where T, is the value of T', the three-component of the isospin operator T',
A

Y i —Y 1+iY 2 Y2-g Y a Y a Y a — Pr io i

(a=1, 2, 3; 1=x,y, z), and (OTIIY, llnT') is the reduced matrix element of Y', ' in isospin space.
For the ground state of 'He, (OTI Y IOT) = 3+ 2IP'I2, which is easily obtained from the expectation val-

ues of T'=L T'T', S'=Q„S„S~(S~ are the spin operators), and C,a = T2+Sm+ Y, the second-order
Casimir operator of SU(4). When P, P'=0, it is easy to see that the sum rules (1) and (2) are saturated
by the only (T=1,S=O, L=O)-(T=O, S=1,L=O) Gamow-Teller (GT) transition; hence IM, I

=1. Sim-
ilarly, by setting P, P'=1, we obtain IM, I

= —', .
By definition

2
—.
'

I fola„.L;
=

I
~'*xM, + P'*PM, I'-=I —~'.
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Equation (5) i«u» is sati«ted whe»' -&'+ 3 lpl' . Since I
pl'- lyl', we must have

-'. Iyl'+ I~l'- ~'.

The magnetic moment of 6Li is given by

p('Li)=0 88 0 38x 4(IPI +lyl +31&1 )

From the fact that IPI' ~ ly I' and from (6), we have

Ll oO 88 O 57u( )

The recent experimental value of IG„/G„l reduces I jol6H, &„; from the old value of 5.6+0.2 to 5.16
+0.2. This gives e'=1- —,

'
I jo I'=0, 14+0.03, which leads to p('Li) &(0.800+0.016)p„as compared with

the experimental value of 0.822 p,„.
Other examples of superallowed GT transitions can be found in the 1P and 2s-1d sheD nuclei; for ex-

ample, the supe r allow ed tr an s ition

(7)

LOG(7' —1 g" —0+) ROB+(7' —0 gw —1+)

has ft = 1.0X 10', corresponding to I jo'I'=3. 69 +0.2 as reported by Kavanaghs and BahcaD, ' but not yet
firmly established. From this value, one gets e'=0.40, which implies that p("B*)is greater than
0.652 p„as compared with the recently measured value' of (0.63+0.12)p.„. The superallowed transition
"Ne-"F has I jo I'=3.81, and hence e2= 0.375, and p("F) is thus predicted to be greater than 0.666p, „.

We note that since IPI ~ ly I, ix I
» in I, inequality (3) also implies that

So far we have only made use of the information extracted from the superallowed transition and the
limits obtained are interesting only when &' is small. However, it is possible to improve the upper
limit of I PI' by making use of (1) and (2); one gets

l~'I'= -:("-Z„l&g ll y'. 'I o&I'), (9)

where P„l&g1 IF, 'InO) I' is the total IAT I=1 GT transition strength except the strongest superallowed
transition strength defined by —,

'
I j&x I'=1- e'. Therefore a very accurate measurement of a large num-

ber of (1, 0') —(0, 1') GT transitions can give a good estimate of the upper bound on IP' Im.

Similarly, the upper limit on Iz I' for the ground state of 'Li can be derived with the help of Eqs. (9)
and (11)of Ref. 1:

lal' - ~' - lK. I &g II allo's&l'+-'. 2„ I &vill" II 1+m& I'), (10)

where &gild'ild'n) is the reduced matrix element of 1"„'in ordinary space.
Thus the existence of GT transitions to all excited states with T = 1, O' = O', 1' further reduces the

upper bound on Iz I'. The upper limit on the magnetic moment of 'Li is derived by means of Eq. (7) of
Ref. 1 and the sum rule s for the ground- state expectation value of 8'. We have

2I ol'- &&.& —&S.&'= 3(kZ I&g IISII1+~&l'+ Kl&g IIS'II2'~&l'),
tl &g

where &gllS~~J'n) is the reduced matrix element of S~. Because of our lack of experimental data on
b, T=O, isoscalar Ml transitions, all we can tell from (11) is that

&s.& = -'.
I
- 1 (1 8I I')'"] = 1.

This gives an upper limit on p, ('Li) and we arrive at

(0.800 + 0.016)p„~ p('Li) ~ 0.88 p, ~.

(12)

Since SU(4) is a good symmetry for the ground states of A = 6 nuclei, the bounds on p('Li) derived
above are essentially model independent.

A 10%%uo reduction of the GT transition strength due to meson exchange currents (as in the case of the
threshold neutron capture n+P -d+y) can reduce the lower limit to 0.76. ln any case, we must con-
clude that relativistic corrections to the magnetic moment of Li cannot exceed 7.3%.
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At present very few data are available on M1 transitions in 4N+2 nuclei, so that an upper limit on
the supermultiplet impurity cannot be determined in the same way as for Li. However, there is good
reason to believe that the impurities for ' B* and "Fare small since these two nuclei can be described
as two nucleons in a triplet state coupled to 'Be and "0 cores, respectively, and it is known' that the
ground states of 'Be and "0 are nearly pure scalar supermultiplets. Thus, inequalities (6), (7), and

(12) are still valid and one gets

0 65p - p(' B*)- 0 88t.I.»
0.66tts & p("F) & 0.88tj, s.

We note that a recent theoretical calculation' gives )L("F)= 1.14'„, in disagreement with the above
upper limit.

In concluding, I would like to point out that more accurate experimental data on AT = 1 QT and M1
transitions from the ground to all excited states in doubly odd 4Ã+2 nuclei will give a good estimate
of the supermultiplet impurities of the ground state, thus enabling us to establish the validity of SU(4)
in these nuclei.
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Separable wave equations with source terms are presented for electromagnetic and

gravitational perturbations of an uncharged, rotating black hole. These equations de-
scribe the radiative field completely, and also part of the nonradiative field. Nontriv-
ial, source-free, stationary perturbations are shown not to exist. The barrier integral
governing synchrotron radiation from particles in circular orbits is shown tobe the
same as for scalar radiation. Future applications (stability of rotating black holes,
"spin-down, " superradiant scattering, Qoating orbits) are outlined.

It is generally accepted that the gravitational
collapse of a massive rotating star can produce
a rotating black hole. Moreover, black holes
may play important roles in a number of astro-
physical phenomena: (i) One or more black holes
near the center of the Galaxy might be the origin
of Weber's' gravitational-wave events; (ii) a
massive black hole at the center of the Galaxy

has been postulated' to explain radio and infrared
phenomena there; (iii) the x-ray source Cyg-Xl
—and also 2U-0900-40 —is likely to be a black
hole in close orbit around a B-type supergiant
star, with the x rays emitted by gas flowing from
star to hole. '

These developments create an urgent need for
two types of black-hole calculations: first, cal-
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