
Vol.UMz 29, NUMssR 16 PHYSICAL REVIEW LETTERS 16 OcroBER 1972

the walls. The local values of conductivity are
nearly the same as the average conductivity mea-
sured by penetration time.

According to the experimental results the con-
ductivity varies as c~M;n, /B, ' or the effective
collision frequency varies as v, t&-B,'/M, . For
our typical [Fig. 2(c)] conditions v =3 &10' sec ',
i.e., near the co„at the peak of the magnetic field
and roughly 2 orders of magnitude higher than
either the electron-ion or electron-neutral colli-
sion frequency.

During the last few years, several theories
have been developed concerning instabilities that
can be excited in a plasma when an electric cur-
rent flows perpendicular to the magnetic field.
Based ori the quasilinear equation, these theories
give approximate expressions for the effective
collision frequency. However, the work' appar-
ently most relevant to this experiment does not
give the scaling we observe. The fact that the
conductivity is somewhat independent of r and v

probably means that saturation of the instability
has occurred and therefore comparison with pre-
dictions from quasilinear theory is not valid. No

existing theory describes this situation of con-
siderable practical importance in the magnetic
compression of a field-free plasma.
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Negative-energy modes driven by a normal gradient of the electron temperature are
found in two-dimensional equilibrium configurations such as the toroidal diffuse pinch.
These modes tend to grow by transferring (positive) energy to the resonating electrons;
they have properties that make them suitable to alter considerably the orbits of the
deeply trapped electrons by proper resonant interactions, and make them lead to elec-
tron thermal energy transport across the magnetic field without corresponding particle
transport.

To understand the macroscopic transport pro-
perties of two-dimensional confined plasmas, a
detailed knowledge of the modes which can be
excited in them' is necessary. In particular, an
important question is whether the orbit of deeply
trapped electrons in a toroidal confinement con-
figuration can be significantly altered by the col-
lective modes2 to which the plasma is subject.
An analysis of the needed characteristics of such
modes leads to requiring that (i) they exist for

frequencies ~ -cu&, where pD~ is the average
bounce frequency of trapped electrons; (ii) the
profile of the resulting electric field fluctuations
is correlated with the periodic variation of the
magnetic field and is nonzero and even around
the point of minimum magnetic field; (iii) they
should not be damped by the process of resonant
interaction with trapped electrons. This last re-
quirement can be met, for instance, if the rele-
vant modes are of negative energy, ' in the sense
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that they tend to grow when positive energy is
transferred to the resonant particles from the
wave.

Now we recall that in a symmetric torus in
which the magnetic field can be represented as B
"-Bo/[1+ (x/Ro) cos8], r and R, being the minor
and major radii of a magnetic surface, respec-
tively, Co„ is of order (r/R, )'" v&/2qR„where
v@, is the electron thermal velocity, and q = rB~/
RQ~, Br and B~ being the toroidal and poloidal
magnetic field components, respectively. An
analysis of the possible modes that can be excited
with frequency ~-~~ on the basis of the micro-
instabilities known to occur in one-dimensional
equilibrium configurations leads to unrealistic re-
sults. For instance, if we consider drift modes
with electric potential 4= P(r) exp(-icut —im'8
+iic&f), where g is the direction of the magnetic
field, we obtain

mal modes are of the form@=-q„o „o(8,~) exp(-i&et
—im'8+in'f), where we assume that Bp o „o(8,x)/
88«moP o „o(8,~). We consider in particular
those modes which are radially localized around
a rational surface x= ro such that q(xo) =m /n .
The longitudinal electric field, that is important
for the resonant mode-particle interaction, is
X = E, 8/B = —(B,/r+)(8/88)P (8), where E
= —V4and j (8) =P o p('Yo 8). Since we are in-
terested in the interactions with deeply trapped
electrons, we shall analyze modes with P„(8) odd
(in 8) around 8 =0, so that E~~ is even and nonzero
around the same point.

We consider the frequency range Pu„&co ~~~
and short transverse wavelengths so that ~., ~ ~~
This implies b&»1 and the perturbed ion distribu-
tion function is then

n&= —(en&/T;)P .

2vn T, +T,] r„'

Here &u+, = (mo/r)(cT, /eBn) dn/dr=m (p, /r)vq, /
2~„, with p, being the electron Larmor radius;
x„ indicates the density gradient scale distance;
b& = &(m p;/r), with p; the ion Larmor radius;
v, h; is the ion thermal velocity; E(b;)=—Io(b, )
&& exp(- b;), with Io the known modified Bessel
function. Therefore, the condition ~R +~ would
require

r„ fr'l'" (m„T, &"' T
Roq (Rj I, mcmTe& Ts+T~

To determine the perturbed electron density n,
we derive the perturbed electron distribution, in
the-guiding center approximation, by integrating
the linearized Vlasov equation along particle or-
bits. ' For this we define e =m(v~~'+v~')/2 as the
particle energy, p, =mv~'/2B as its magnetic mo-
ment, and A= pBo/e as representing the pitch an-
gle so that v„= (2e/m)'"[1 AB(8)/B—,]"'. The
quantity ~b defines the bounce frequency for
trapped particles (-,'R,qo f d 8/I v ~~l for 1 —~o/Ro &A

&1+so/Ro) and the transit frequency for circu-
lating particles (Roqo fo" d8/v~ for 0 & A& 1+ro/Ro).
Then we decompose p (8) in harmonics of the or-
bit periodicity, so that p„(8)=+~4 (A) exp(ip&f)
where t= Jod8'/v~~ and &,t is a function of A only.

The unperturbed electron distribution is as-
sumed to be of the form f, =fM, (1 +f,), where fM,
is the MMmrellian with temperature T„

which is not satisfied in realistic diffuse-pinch
configurations.

We could also consider ion-sound waves, but
these are not likely to be excited in experiments
where T, is not much larger than T; and the elec-
tron drift velocity is much less than vh„as is
usually the case.

The modes we shall find here satisfy all three
requirements indicated previously, and unlike
the known drift modes they can be made unstable
by a gradient of the electron temperature in the
direction of the density gradient. For a two-di-
mensional toroidal configuration which is inhomo-
geneous and periodic in j9, the appropriate nor-

(dn (dr dT, ~.-aiT,
)IQ~, I ( n, dr T,

and IQ~, I =eB~/m, c= IQ, IB~/B. This form of f, is
appropriate for trapped electrons in regimes4
where their average collision frequency (v, ) is
smaller than ~~. In the following we shall consi-
der the limit of sufficiently large values of Ro/xo
for which, as we can see, the contribution of f,
that is appropriate for circulating particles can
be neglected to order (ro/Ro)" '. We have also
extended' our results to include the contributions
of circulating particles which are numerically
significant for realistic values of r, /Ro by adopt-
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ing, for circulating particles

vo (dn T, dT;/dr vp fdn 1 +T;/T, dT, /dr dT, p
—s/T, I

For cr =0.172 this expression is consistent, to order ro/Ro, with the results of Ref. 4. Then, following
Refs. I or 2, we are led to

n, =(en/T, )(p„-n fd vfM, [~ —~., +cur, (—, —e/T;)]&~[4 (A) exp(ip~, t)]/(~-p~, )),
where ~r, =jv.,(d lnT, /dr)/(@inn/dr). Recalling that moP»SP /88, we consider Poisson's equation
(mo/rp)IP = 4we(n; —n, ) and take the quadratic form

(m /ro) fdllP J /B —4mefdlP„~(n; —n, )/B=0,

(6)

where dl=Roqod8. Then we obtain, ' for (moXn/ro)'&1,

l1+ ' n tdl " =kml —

l «dpfM, (e)lrl ~-~ e+~re 2-—I Z( T. IP„I2, t' 2l' 3 ~ l I4„&»(A)I2
(5)T; B (mj Tei p~ o ~ Pop~

where AD is the Debye length, and +~=2m/r We. also have expressed fd'v as (2w/m,

m)fdic

dc 8/IqiI with
the convention that contributions from positive and negative values of v, i

are to be added, and have
made use of the fact that fdl/B ffdp, d~B/Ivgl = ffdpde IY I.

For simplicity, we consider the limits e/8&~&1 and Ro/ro &1. We expand Eq. (5) in these two param-
eters, and carry out the integration over e to obtain

l j d8l l2 ~Rl r)+ d QLS( 2)p (X)

(p& re ~ee)&
d 2L@1 my~ l4 (II'. )I+ l S 3~ 3ro 4v ~ee o p&p P

where as indicated earlier we have neglected the contribution of circulating particles within the last
two terms.

In order to derive Eq. (6) from Eq. (5) we have observed that

I/A) 2

Z =Z I@'"'I' 2 2 -„(~-pop,) '=Z((u-p(u, ) '+i've(~-p(u, ),p~ P&s p&o ~ P»
where 5(u&-pop, ) =(c/I~l)5(e-pc(y)), e(y)= (~Roqo)2L'(g)Ro/ro, and thatP[2~/(&u'-p'&u, m)]= —2op/(p~, )'
in the considered limit w/23o, &1. We also have defined 0„=vo„/Roqo as the average transit frequency,
chosen m' such that ~&0, and taken y'-=-,'[1+(1-A)Ro/ro] so that 0 & g & 1 is equal to half of the excur-
sion amplitude in 8 of deeply trapped particles. In addition, L(y')=-, Pd8/(2y' —1+cos8)"2.

The last term in Eq. (6) results from resonances of the considered wave with trapped particles hav-
ing bounce frequency m, = &v/P. The second term, which is larger by a factor of order Qh, /+, has no
correspondence in the stability theory of one-dimensional plasmas involving resonances of the form
4) —Qg vii so that, in the limit ~ & k &vz, the resonant contribution to the dispersion relation is of order
ur/4&v@ instead of op /Coo, as is in the present case.

H we neglect the last (resonant) term in Eq (6), we. can use the remaining quadratic form as a vari-
ational form in order to evaluate co. Thus, the imaginary part of + is obtained as a perturbation, and
in this sense we can estimate the stability of the modes under consideration by the equation

(
RoY (ee re)~ ~R (a~re ~'e)~ ~ 0i+~

0) ~ca r ~ce

Here && and &~ are positive numbers resulting from the evaluation of the integrals appearing in Eq.
(6) when P is replaced by a trial function P which is found by applying the variational principle indi-
cated earlier.

Now we see that instability is found for , d inn/dr &d lnT,—/drcd inn/dr, and this is compatible with
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the assumption that co&co~. However, the gener-
al quadratic form Eq. (5) shows no evidence that
these modes disappear for ap -~~. In particular,
when d inT, /dr =d inn/dr, the relevant instability
ceases to be of resonant type, as Rex - Imago, and
an additional term has to be included in Eq. (7).

We recall that the known electron drift modes'
are damped by the contribution of ~~, when
(d 1nT, /dr)/(d inn/dr) & 0 and are such that H and

y are out of phase. Instead, for the modes pre-
sent here, n and 9) are in phase, as indicated by
Eq. (2), and we expect, on the basis of quasilin-
ear theory, that they lead to electron thermal en-
ergy transport across the magnetic field without
a corresponding particle transport. We also no-
tice that 0dd modes, of the type considered here,
are less susceptible to the effects of collisions
than the even modes treated in Refs. 6 and 7.

We refer to the quadratic form (4) and define
an effective dielectric constant e in terms of the
integrals 9, and Kz in Eq. (7). Then we may ar-
gue that the wave energy is proportional to use/
3ru = —(ro/m'AD) (1 +T,/T;) which is evidently neg-
ative. From Eq. (6) we can also see that most of
the electrons (linearly) resonating with this wave
are barely trapped.

The influence of well-developed modes of the
type considered here on the orbit of deeply
trapped ions has been studied analytically and nu-
merically. ' It has been found' that, depending on
the value of the parameter a'", where a = eP, R,/
)iBor- (Ro/r)eP, /T and P, is the characteristic
mode amplitude, the trapped-particle oscillations
can be amplified up to 2(16n)", but still remain
trapped if a is sufficiently small. The resulting
orbits are composed of a sequence of open banana-
like excursions in the r, 8 plane, have a superperi-
od about equal to (16o.)'"2/&u, . When o. is larger
than a reasonable value [such as a=0.15 which
has been obtained in Ref. 6 for P (8) = P, sin8],
the resonating particles can be untrapped and

circulate for a considerable part of their super-
period. The radial particle excursions can be
considerably larger than the known banana width
of trapped particles, and the average magnetic
curvature drift can be more favorable to the sta-
bility of interchange modes than in the case
where fluctuations are absent.

So in the presence of modes which are odd in
and have frequency close to the average

bounce frequency of the ions and of the electrons,
we can have "quasibanana" orbits with relatively
large amplitudes for the particles which remain
trapped, or quasicirculating orbits for the parti-
cles which become periodically untrapped. We
can infer that the stability of lower-frequency '
modes, such as the trapped-particle interchange
modes, and the particle and energy transport
across the magnetic field will have to be re-eval-
uated by taking these effects into proper account.

It is a pleasure to thank G. Rewoldt for criti-
cism.
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