Higher-Precision Determination of the Fine-Structure Interval in the Ground State of Positronium, and the Fine-Structure Density Shift in Nitrogen*

E. R. Carlson, V. W. Hughes, M. L. Lewis, and I. Lindgren† Gibbs Laboratory, Yale University, New Haven, Connecticut 06520 (Received 25 August 1972)

The fine-structure interval $\Delta \nu$ in the ground state of positronium has been remeasured with higher precision to obtain $\Delta \nu_{expt} = 203.396 \pm 0.005$ GHz (24 ppm). The current theoretical value is $\Delta \nu_{theor} = 203.4155$ GHz. The difference $\Delta \nu_{expt} - \Delta \nu_{theor} = -19 \pm 5$ MHz is about 4 standard deviations of the experimental error, indicating the need for calculations of higher-order radiative contributions. Values are given for both the linear and quadratic coefficients of the fine-structure density shift in N₂.

The importance of a highly precise measurement of the fine-structure interval $\Delta \nu$ in the ground state of positronium for a test of quantum electrodynamics, and in particular of the Bethe-Salpeter equation for the bound-state lepton-antilepton system, is well known.^{1,2} The present Letter reports a value for $\Delta \nu$ with a substantially smaller error than the best previously quoted value.³ Significant comparison of this new precise value for $\Delta \nu$ with theory clearly requires the calculation of higher-order radiative contributions to $\Delta \nu$.⁴

The method of the present experiment is the measurement of the Zeeman transition frequency between the M = 0 and $M = \pm 1$ magnetic sublevels of orthopositronium by a magnetic resonance technique, and is basically similar to that used in previous measurements.^{3,5,6} The transition frequency f_{01} in a magnetic field H is given by

$$f_{01} = \frac{1}{2} \Delta \nu \left[(1 + x^2)^{1/2} - 1 \right] \tag{1}$$

in which $x = 2 \mu_B g' H / h \Delta \nu$. The quantity g' is given by

$$g' = g(1 - \frac{5}{24} \alpha^2) = g(1 - 11.1 \times 10^{-6}), \qquad (2)$$

where g is the gyromagnetic ratio of the free electron (or minus that of the free positron),⁷ $g = 2(1.001\,159\,656\,7\pm0.000\,000\,003\,5)$.

The factor involving α^2 is a relativistic boundstate contribution.⁸⁻¹⁰ It was obtained using a Hamiltonian for positronium in an external magnetic field consisting of the Pauli Hamiltonian,¹¹ the Breit interaction,¹² and the virtual annihilation interaction.¹³ A transformation developed by Chraplyvy¹⁴ for two-body equations was used to decouple the large and small components. This approach is an extension of the Foldy-Wouthysen transformation¹⁵ for the Dirac equation. The α^2 term arises from the relativistic change of mass with velocity and from the spin-orbit and spinother-orbit interactions, but does not have a contribution from the virtual annihilation interaction. The α^2 factor was also derived¹⁶ from a two-particle Breit equation by the method of Perl and Hughes.¹⁷ Finally this factor can be obtained by the general derivation of Grotch and Hegstrom.¹⁸

Important improvements in apparatus and in experimental technique have enabled us to obtain the substantial improvement in accuracy. A schematic diagram of the experimental apparatus is shown in Fig. 1. A new electromagnet¹⁹ with a pole diameter of 38 cm and a pole gap of 10 cm was used to produce a field of about 7800 G homogeneous to ± 4 ppm over a volume of 7 cm³. The field was regulated to ± 0.5 ppm by an NMR stabilization system. The microwave system at 2.3 GHz was essentially that previously used,³ and the positron source was 2.5 mCi of Na²². The stopping gas was ultrahigh purity N₂, which allowed the use of sufficiently high input microwave

FIG. 1. Schematic diagram of experimental apparatus.

power at the lower pressures without electrical discharge. Eight NaI (Tl) γ -ray detectors were used to provide four coincidence detectors for two 0.51-MeV annihilation γ rays with a 0.2- μ sec time resolution and an overall increase in detection solid angle by a factor of 9 compared to an earlier experiment.³ The active volume for positronium observation of 7 cm³ is about twice that of the previous experiment. Data were collected with a multichannel pulse-height analyzer.

A resonance curve was obtained by varying the magnetic field H with fixed microwave frequency and power. Signal heights were 3% to 11% and linewidths (full width at half-maximum) were 30 to 47 G. A nonresonant magnetic-field-dependent background, which arises from the magnetic focusing of positrons and from the increase in the $2\gamma/3\gamma$ branching ratio with increase in field and which amounts to about 5% of the resonance signal, was subtracted from the raw data by using a representation of the background linear in Hover the resonance region. The remaining signal was fitted by the theoretical line shape as described for a previous experiment.³ 54 resonance curves were obtained for N₂ pressures from 0.14 to 3.40 atm.

For each resonance curve a resonance microwave frequency f_{01} and central magnetic field H_0 is determined by the fitting procedure. Then with the use of Eq. (1) a value for $\Delta \nu$ is calculated. A plot of the values of $\Delta \nu$ versus N₂ density is shown in Fig. 2. The solid circles are the weighted means of all values of $\Delta \nu$ obtained at a given density, and the associated error bars are 1-standard-deviation errors, due predominantly to statistical counting errors. The data are fitted by the function

$$\Delta \nu(D) = \Delta \nu(0)(1 + aD + bD^2) \tag{3}$$

in which D is the gas density, and a and b are the linear and quadratic coefficients, respectively, of the fine-structure density shift. The results are given in Table I and indicate that not only a linear but also a quadratic density shift is pre-

FIG. 2. Plot of $\Delta \nu$ versus N₂ gas density in units of atmospheres at 23°C. The solid and dashed lines are the quadratic and linear fits using Eq. (3), respectively. The solid bars show 1-standard-deviation errors for the fitted values $\Delta \nu$ (0).

sent.

The principal result of our experiment is a value for $\Delta \nu$ of free positronium based on the fit of Eq. (3) to our data:

$$\Delta \nu_{\text{expt}} = 203.396 \pm 0.005 \text{ GHz} (25 \text{ ppm}),$$
 (4)

in which the error is mainly due to a statistical counting error.²⁰ This result agrees with, and has 1/2.5 times the quoted error of, the best previously reported result³:

$$\Delta v_{\text{expt}} = 203.403 \pm 0.012 \text{ GHz}$$
 (60 ppm).

The current theoretical value is⁴

$$\Delta \nu_{\rm theor} = \frac{1}{2} \alpha^2 c R_{\infty} \left[\frac{7}{3} - \frac{\alpha}{\pi} \left(\frac{32}{9} + 2 \ln 2 \right) - \frac{3}{2} \alpha^2 \ln \alpha \right]$$

 $= 203.4155 \pm 0.0006 \text{ GHz} (3.1 \text{ ppm})$ (5)

using²¹

$$\alpha^{-1} = 137.036\ 02 \pm 0.000\ 21\ (1.5\ ppm),$$

 $R_{\infty} = (1.097\ 373\ 1 \pm 0.000\ 000\ 1) \times 10^5\ cm^{-1}$
(0.1 ppm)

TABLE I. R	lesults	of fits	of the	data	$\Delta \nu(D)$	by	Eq.	(3)	for	N_2	gas.
------------	---------	---------	--------	------	-----------------	----	-----	-----	-----	-------	------

	Linear fit	Quadratic fit
$\Delta \nu(0)$ (GHz)	203.384 ± 0.004	203.396 ± 0.005
a (10 ⁻⁵ atm ⁻¹ at 23°C)	-5.7 ± 1.4	-23 ± 6
$b (10^{-5} \text{ atm}^{-2} \text{ at } 23^{\circ}\text{C})$	0	$+5.7 \pm 1.8$
χ^2 per degree of freedom	17.1/9	6.8/8
$\Delta v_{\rm expt} - \Delta v_{\rm theor}$ (MHz)	-31 ± 4	-19 ± 5

and²²

$$c = (2.99792462 \pm 0.00000018) \times 10^{10} \text{ cm/sec}$$

(0.06 ppm).

The indicated uncertainty in $\Delta \nu_{\text{theor}}$ is due to the uncertainty in the constants used in evaluating $\Delta \nu_{\text{theor}}$ from Eq. (5). The next uncalculated radiative correction term is of order $\alpha^4 R_{\infty}$ which is about 50 ppm.

The difference between the experimental and theoretical values for $\Delta \nu$ is

$$\Delta \nu_{\rm expt} - \Delta \nu_{\rm theor} = -0.019 \pm 0.005 \text{ GHz}, \tag{6}$$

where the uncertainty is the 1-standard-deviation experimental error. This difference is about 4 standard deviations of the experimental error. Clearly a more significant comparison of experiment and theory requires the calculation of the $\alpha^4 R_{\infty}$ radiative correction term.

The experimental values for the linear and quadratic coefficients of the fine-structure density shift are obtained from the quadratic fit of Table I. We note the large difference between the values of a determined with or without the allowance for a quadratic term. In earlier work with Ar gas, not enough data were obtained to test for the quadratic term.³ No quantitative theory has yet been given for the positronium fine-structure pressure shifts.

We believe that our present apparatus and technique, when supplemented with improved data acquisition equipment and a higher-intensity Na²² source, are capable of achieving an accuracy of 10 ppm in the determination of $\Delta \nu$, which would correspond to a choice of the resonance line center of $\frac{1}{1000}$ of its full width at half-maximum. ¹S. J. Brodsky and S. D. Drell, Annu. Rev. Nucl. Sci. <u>20</u>, 147 (1970).

²V. W. Hughes, in *Atomic Physics*, edited by V. W.

Hughes, B. Bederson, V. W. Cohen, and F. M. J.

Pichanick (Plenum, New York, 1969), p. 15.

³E. D. Theriot, Jr., R. H. Beers, V. W. Hughes, and K. O. H. Ziock, Phys. Rev. A <u>2</u>, 707 (1970).

⁴T. Fulton, D. A. Owen, and W. W. Repko, Phys. Rev A <u>4</u>, 1802 (1971).

⁵M. Deutsch and S. C. Brown, Phys. Rev. <u>85</u>, 1047 (1952); R. Weinstein, M. Deutsch, and S. Brown, *ibid*.

94, 758 (1954), and 98, 223 (1955).

⁶V. W. Hughes, S. Marder, and C. S. Wu, Phys. Rev. 106, 934 (1957).

⁷J. C. Wesley and A. Rich, Phys. Rev. A <u>4</u>, 1341 (1971); S. Granger and G. W. Ford, Phys. Rev. Lett. <u>28</u>, 1479 (1972).

⁸E. R. Carlson, V. W. Hughes, and I. Lindgren, Bull. Amer. Phys. Soc. <u>17</u>, 454 (1972).

⁹E. R. Carlson, V. W. Hughes, and I. Lindgren, in Abstracts of the Third International Conference on Atomic Physics, Boulder, Colorado, August, 1972 (unpublished), p. 32.

¹⁰M. L. Lewis and V. W. Hughes, in Abstracts of Third International Conference on Atomic Physics, Boulder, Colorado, August, 1972 (unpublished), p. 149.

¹¹W. Pauli, Rev. Mod. Phys. <u>13</u>, 203 (1941).

¹²V. W. Hughes, in *Facets of Physics*, edited by D. A. Bromley and V. W. Hughes (Academic, New York, 1970), p. 125.

¹³W. A. Barker and F. N. Glover, Phys. Rev. <u>99</u>, 317 (1955).

¹⁴Z. V. Chraplyvy, Phys. Rev. <u>92</u>, 1310 (1953).

¹⁵L. L. Foldy and S. A. Wouthuysen, Phys. Rev. <u>78</u>, 29 (1950).

¹⁶E. R. Carlson, Ph.D. thesis, Yale University, 1972 (unpublished).

¹⁷W. Perl and V. W. Hughes, Phys. Rev. <u>91</u>, 842 (1953).

¹⁸H. Grotch and R. A. Hegstrom, Phys. Rev. A <u>4</u>, 59 (1971).

¹⁹Varian 15-in. electromagnet (V-3802).

²⁰In Ref. 8 a preliminary value for $\Delta \nu_{expt}$ was reported. The value in Eq. (4) is based on more extensive data.

²¹B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. <u>41</u>, 375 (1969).

^{*}Research supported in part by the National Science Foundation (Grant No. GP 23722).

[†]Present address: Physics Department, Chalmers University of Technology, Gothenburg, Sweden.

²²Z. Bay, G. G. Luther, and J. A. White, Phys. Rev. Lett. <u>29</u>, 189 (1972).