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where EF is the Fermi energy. On the other
hand, from Eq. (1) we obtain the following rela-
tion:

Comparing Eqs. (2) and (3) we find that

()
Tile conclusion is that ill Eq. (1) onlp p~ should be

&A=r&F

We propose a simple general-model pseu
the real potential of metal ions, especially

Interaction between ions and conduction elec-
trons in metals occurs through the central sym-
metric nonlocal pseudopotential to(r). ' Sham' has
indicated that the nonlocal pseudopotential can be
replaced by an effective local potential having the
advantage of considerably simplifying the compu-
tations. The aim of this work was to find a mod-
el local pseudopotential which could give good
real-potential approximations for all simple met-
als.

Considering the metal potential structure we
have concluded that it would be interesting to uni-

fy the Coulomb potential which occurs due to the
Ze core and the potential component which arises
from the Pauli repulsion exerted by the bound
electrons. %e have found that the following math-
ematical form was the most suitable to describe
the known potential structure, i.e., to favor the
Coulomb component in the range of small wave
numbers and, at the same time, to change it by
further decreasing the oscillating potential in the
range of large wave numbers:

(k+ quito ~ k) = p, sin(2II p,I1)/2IIIi, (1)

where P, and P» at the first step, are the two ad-
justable parameters, and Ii=q/2kF, with q a wave
number and AF the corresponding Fermi momen-
tum. The parameters P, and P, are fitted to the
form-factor data given by Animalu and Heine'
based on the Heine-Abarenkov model potential. '
From the known relation valid for aB forms of
the local potential in which the Coulomb potential
is included, we have

lim(k+q~to~k) = gi'lI, '/2m ~ = g& F, (2)

TABLE I. Proposed model pseudopotential param-
eters computed from the fit by the Heine-Abarenkov
model potential.

Ge

Te

- 2, 9741

- 2, 5830

- 2, 0297

- 2, 2900

- 2, 2977

- 9, 6093

- 5, 3679

—3, 2853

—2, 2670

- 6, 9613

- 6, 2427

- 6, 4095

- 7, 8967

- 8, 0517

— 6, 8243

—6, 9242

- 9, 2737

— 8, 6594

- 7, 6781

— 7, 7704

- 8, 3321

- 7, 9886

-10, 040V

—8, V329

5, 8471

5, 6121

5, 7895

4, 8009

4, 3583

7, 3415

6, 5139

6, 9808

7, 9149

6, 0589

5, 8838

5, 4115

7, 2638

6, 37V5

6, 2090

5, 7653

6, 6108

6, 5247

6, 5322

5, 9826

6, 4614

6, 0574

6, 3128

6,4736

dopotential, which is in good agreement with
in the range g» 2A'F ~

fitted while P„according to Eq. (4), can be found.
The results for the parameters P, and P, , found
in this way for 24 elements, are shown in Table
I. Some representative form factors computed
from Eq. (1) are shown in Table II. The errors
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TABLE II. Some illustrative form factors computed by the model pseudopotential proposed in this work,

Sodium
B = - 2. 5830

B2
= 5. 7895x10

Potassium
B = —2. 0297
B = 5. 7895x10

2

Formfactors in
Barium

B = —2. 2670
= 7. 9149x10

rvdberg
Zinc
6 = - 6. 9613
B = 6. 0589x10
2

Mercury
= - 6.40951= -2

B = 5.4115x10

Indium
B = - 6.8243
B = 6.2090x10

0, 0
0, 1
0, 2

0, 3
0, 4
0, 5

0, 6
0, 7

0, 8
0, 9
1,0
1,1
1 2
1 3
1,4
1y5
1,6
1,7

1,8

1,9
2, 0

— 0, 14496
- 0, 14421
- 0, 14197
- 0, 13829
— 0, 13324
— 0, 12690
- 0, 11940
- 0, 11086
- 0, 10146
- 0, 09134
- 0, 08070
- 0, 06972
- 0, 05859
- 0, 04750
- 0, 03662
— 0, 02813
— 0, 01620
— 0, 00696

0, 00146
0, 00895
0, 01542

— 0, 11751
— 0, 11686
- 0, 11494
- 0, 11177
— 0, 10741
— 0, 10197
- 0, 09554
- 0, 08824
- 0, 08022
- 0, 07163
— 0, 06263
— 0, 05339
— 0, 04407
— 0, 03485

0, 02587
0, 01730

— 0, 00926
— 0, 00188

0, 00474
0, 01051
0, 01538

— 0, 17943
- 0, 17759
- 0, 17213
- 0, 16325
- 0, 15128
- 0, 13665
- 0, 11989
- 0, 10160
- 0, 08242
- 0, 06299
- 0, 04396
- 0, 02593
- 0, 00945

0, 00504
0, 01717
0, 02669
0, 03344
0, 03755
0, 03897
0, 03798
0, 03486

- 0, 42178
— 0, 41924
- 0, 41167
- 0, 39923
- 0, 38219
— 0, 36093
- 0, 33589
- 0, 30760
- 0, 27666
- 0, 24372
- 0, 20944
- 0, 17451
- 0, 13963
- 0, 10546
- 0, 07263
- 0, 04173
— 0, 01328

0, 01227
0, 03457
0, 05334
0, 06840

- 0, 34685
— 0, 34518
- 0, 34021
- 0, 33201
— 0, 32073
- 0, 30656
- 0, 28975
- 0, 27059
- 0, 24938
- 0, 22650
— 0, 20232
- 0, 17723
- 0, 15164
- 0, 12595
- 0, 10055
— 0, 07584
- 0, 05217
- 0, 02986
- 0, 00922

0, 00950
0, 02608

- 0, 42372
— 0, 42104
- 0, 41305
—0, 39995
- 0, 38202
- 0, 35967
- 0, 33340
- 0, 30380
- 0, 27152
- 0, 23725
- 0, 20174
- 0, 16573
- 0, 12996
- 0, 09515
- 0, 06195
- 0, 03099
- 0, 00280
- 0, 00280

0, 02218
0, 04358
0, 07480

are of the order 0.001 Ry in the stated interval;
the general behavior for the q &2kF range has the
same trend as the "experimental" curve but the
errors are about 0.01 Ry.

A comparison is also made in Fig. 1, where 0
denotes Harrison's curve' of the form factors for
zinc, the dashed line gives the "experimental"
form factors, ' and the solid line represents the
form factors for zinc computed by the present
model pseudopotential, Eq. (1). Periodic depen-
dence of the parameter P, on Z is shown in Fig.
2, where the values presented correspond to
those given in Table I and the Roman numerals
denote the periods.

Ps = -.'(&|-)s/&(Z -Z.)

and the coefficient

(6)

—2.500 for short and the first
half of long periods,

—0.625 for the second half of
long periods.

On the basis of the above analysis we can estab-
lish a general-model pseudopotential relation as
follows:

(k+qiwik)g =n(Z -Z, ) sin(2wPgq)/2wq,

where
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FIG. 1. Comparison of the form factors for zinc.

FIG. 2. Periodic dependence of the parameter P& on
Z. The points represent the values given in Table I.
Roman numbers denote periods, and the lanthanum
group is truncated into one abscissa point.
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Z is the atomic number, ~, is the inert-element
atomic number that begins the period which in-
cludes the actual Z, and (E„)s is the correspond-
irig Fermi energy.

The general-model pseudopotentia1 presented
enables simple computation of the form factors
in the small-wave-number range which is an ap-
preciable advantage, especially in the estimation

of electronic properties.
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%e have observed a peak in the inelastic light scattering of CdS in high magnetic fields
at an energy slightly less than twice the bound electron spin-Qip energy pg&. The inten-
sity, selection rules, field dependence, and binding energy of this process cannot be
explained as second-order scattering. At very high excitation energies (~l MW/cm )
the single spin-flip scattering becomes stimulated, with a sharp threshold and high con-
version efficiency.

We have examined the inelastic light-scattering
spectra of CdS in high magnetic fields (40-100
kG) and have found, in addition to the b, S= 1 spin-
flip scattering from bound' and freem electrons
reported previously, a strong peak in the spec-
trum at an energy slightly (0.25+0.05 cm ') less
than twice the shift of the AS= 1 bound electron
energy tLgH (7.85 cm ' at 89 kG). s The intensity,
selection rules, field dependence, and apparent
binding energy of the double spin-flip process
cannot be accounted for by model calculations
which treat the AS = + 2 scattering as second or-
der; however, all these anomalies have been
interpreted via a theory4 based on a simple model
of the electronic interactions.

our experiments consist of Raman scattering
from CdS specimens having carrier concentra-
tions between g = 1& 10M and 5X 10iv cm-s These
were obtained from Eagle Picher and were shown

by spectrochemical analysis to contain 10"-10'
cm ' In donor concentration. The samples were
illuminated with light at 4765, 5880, 4965, and
5145 A from a 2-% argon ion laser at tempera-
tures between 2.0 and 25'K and in magnetic fields
from 40 to 100 kG. At these Iow temperatures
all samples exhibited spin-flip scattering (&S
=+ 1) with selection rules compatible with those
calculated by Thomas and Hopfield' for electrons
bound to neutral donors having C~~ site symmetry.
In particular, n», ax~, and e» polarizability

components were equally strong, where Z is
the direction of applied field. In contrast, the
same samples exhibited on'y n~~= a» scatter-
ing at higher temperatures (&80'K), as reported
earlier by Fleury and Scott. ' The low-tempera-
ture scattering intensity is attributed to bound-
electron spin flip, whereas the high-temperature
scattering is attributed to free electrons. In
addition to selection-rule differences, the free-
and bound-electron spin-flip processes exhibit
different linewidths and different dependences
upon momentum transfer or scattering angle. '
The free- and bound-electron g values are very
nearly the same, both lying between 1.80 and
1.86.

In the present study, we have observed, in ad-
dition to the AS = + 1 spin-flip processes reported
in Refs. (1) and (2), sharp lines at energies
slightly less than twice the single spin-flip ener-
gy 6 =IjgH. These are shown in Fig. 1 for an
n = 1X10"cm ' sample at 40 kG and 2.0'K. Sig-
nificant features of the higher-energy feature
are (1) its intensity is (5+ 1)% of that for the
AS=1 line; (2) its selection rules are exactly
the same as those for the AS=1 process, i.e.,
the relative intensity E(AS=2)/I(d S= 1) is inde-
pendent of polarizability tensor component (5%
for n», n», and n», stlH); (8) its frequency
is given by c~ =26, —(0.25 t 0.05 cm '), where
4 = pgB=3. 52 cm ' at 40 kG. That is, the fea-


