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Gravitational Synchrotron Radiation in the Schwarzschild Geometry*
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The existence of a mechanism for gravitational synchrotron radiation is demonstrated
in solutions of the wave equation in the Schwarzschild background, with the source a par-
ticle in a highly relativistic circular geodesic. The main features {high-frequency har-
monics, narrow angular distribution in latitude) are shown to hold for vector {electro-
magnetic) and tensor {gravitational) radiations, which are expected to be strongly polar-
ized in the orbit plane. Detailed formulas for the spectrum are given in the scalar case.

As described in the preceding Letter, ' gravita-
tional synchrotron radiation (GSR) is a crucial
concept in searching for exotic astrophysical
phenomena, which it might make visible through
Weber's' gravity telescopes. 8'e here demon-
strate that a gxaeitationaE synchrotron radiation
mechanism exists as a consequence of Einstein's
general relativity theory. Thus, particles in
highly relativistic circular orbits in gravitational
fields can be expected to radiate strongly, into
limited angles, at high harmonics of the orbit fre-
quency. Charged particles would radiate electro-
magnetic waves predominantly, while a neutral
particle would radiate gravitational waves. One
example, however, suffices to prove the exis-
tence of the GSR phenomenon; so this first com-
putation assumes, for simplicity, that the parti-
cle couples to a massless scalar field and radi-
ates scalar waves.

In this paper we consider a highly relativistic
(unstable) circular geodesic orbit near r = 3M
in the Schwarzschild geometry (in units with G
=c =1). Although this calculation is astrophysi-
cally unrealistic, it is important to demonstrate
the possibility of GSR in principle. Furthermore,
the situations of possible astrophysical interest, '
which involve the extreme (a=i') Kerr' black
hole metrics, are expected to have features in
common with Schwarzschild GSR. Gravitational
radiation from highly relativistic orbits has been
computed previously by Peters, ' who also found
radiation concentrated in narrow angles. Peters's
relativistic gravitational brem sstrahlung calcula-
tions considered scattering at large impact param-
eters b»& and for small scattering angles $«1,
while the present GSR calculations in the Schwarzs-
child metric may be considered to treat high-en-
ergy scattering at small impact parameters b
= 3PS~ which involve very large scattering an-
gles $»2n. (The scattering orbit winds around
many times near its pericenter, and is approxi-

The barrier penetration factor which gives these
results is just

exp[ ——'rr (1 +
J
m

J 6) —2rrq], (2)

when 5 is small [see Eq. (19) which gives the
power output in the lm mode]. Here 5 is related
to the radius r, of a circular geodesic orbit in the
field of a Schwarzschild mass ~ by

r, = (3+ 5)M, (3a)

and to the energy (as measured at infinity) per
unit rest mass y by

1 ~ Sy2 (3b)

The radiation in the ~, mode is found to be emit-
ted at frequency

where

(oo (4)

rgp = (M jr s)'r2

is the fundamental (orbit) frequency. Thus the
barrier factor (2) lets us define

mated by an unstable circular orbit. )
The qualitatively most significant aspect of our

result is a barrier penetration factor arising in
the solution of a homogeneous, Schrodinger-like,
wave equation. But the homogeneous equations
are identical in the scalar, vector, and tensor
cases to the required accuracy. Thus the fea-
tures controlled by this factor will hold also for
radiation of electromagnetic (vector) and gravi-
tational (tensor) waves. These features are (i) a
spectrum cutoff for frequencies + &~„j„and
(ii) a suppression of radiation in angular (&, )
modes with q'»1 where

2q=—l —/m/ .
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which shows ~„;,» 1 as r, -3~. Since ~, con-
tains a factor sinI~IO= cosI~IB =exp(- —,

' I~IB'), all
modes which radiate a given, high, harmonic ~
» 1 have their radiation intensity (~ I &, I') con-
centrated in a beam of half -width

aB = [rn[ (7)

centered on the equatorial plane 8 —= 2m —0 = 0. Al-
though the detailed computations necessary to

study polarizations have not been completed, it is
expected that electromagnetic and gravitational
waves emitted by particles in highly relativistic
circular geodesic orbits will be strongly polar-
ized in the plane of the orbit.

In special re lativity the interaction between a
scalar field y and a point particle of mass p, and
world line a (~) is defined by the action integral
(signature —+ + +)

I= —(8n ) 'f q ay y sd'x —p f (1 +fy)( ps~—9) "'dA. . (8)

The above action leads to static scalar forces equal to the Newtonian gravitational force between pairs
of particles if each has "scalar charge" f = v G.

This value off is useful in extrpolating scalar GSR to the gravitational (tensor) case with one provi-
so: The source in the scalar wave equation is

(—gT)"' = p. J d7 u'u p5'(x -z"(v)) = —p, (dz'/dT) '5'(x —a (t)),

while in the tensor case it is

(—gT )"'= g(u ua/u')5'(x —z (t)),
so gravitational wave amplitudes should be stronger by a factor of about (u')' = (dz'/dv)' than the cor-
responding (f=aG) scalar amplitudes when IP" I = lu "/u'I - 1, giving a ratio of approximately (u')' in in-
tensities. In order to use the present calculations to estimate the intensity of scalar radiation which
would be emitted in the Brans-Dicke' theory, where a fraction (4+ 2') ' of the Newtonian force is due
to the scalar field, one could set f= G"'(4+ 2')"', where ~ ~ 6 is the Brans-Dicke coupling constant.

The equation we propose to solve then is the wave equation following from the general relativistic
form of Eq. (8),

(B/Bx~)[(-g)"'g ~(By/Bx )]= —4~f( g)"'T = 4—mf p, (u') '5'(x - z(t)),

with the g~ chosen to be the Schwarzschild metric for a mass M, and the orbit z(t) of the source given
by 0 = &n, r = r, = const, and p = co p t. For a geodesic orbit one has

uo = dt/dT —(1 3Mr ~) ~~2 (3/6)~~2 ~ 3y

as well as in Eq. (5). The expansion

(10)

(r) 'u,.(r)&,"(e,y) exp(- t~~.t),
m=~~ ™

in which the ~, are spherical harmonics, leads to a radial equation

ZVC I'l(l, 1); + I 1 — ~, + —,— ~u —m'(u 'u =C5(r* —r *),dr*' ( r ( r' r'/ (12)

which employs the Regge -%heeler' coordinate
r* =r —3M + 2M ln(rM ' —2) and in which u =u,
and

C —= C, = —4nfu(r, u') 'F, (,'n, 0) . — (13)

This equation is well studied in connection with
the Schwarz schild metric. " Similar equations
would be obtained in the electromagnetic' and
gravitational wave' "cases. These equations all
hav e the form

-u" + (V -E)u =C5(r" —r,*),
with E:~ +p but diff er in the values of C and V.

The forms for V are known from the studies cited
of the homogeneous equations (C = 0), and all have
the common form

V = (1 —2Mr ')l(l+ 1)r '+ 0(lo)

for large l. [The even and odd tensor potentials
differ from each other only in order E ', for the
vector case 0(lo) = 0.]-

The solution of Eq. (12) is obtained by matching
solutions of the homogeneous equation at r*= r,*
and imposing the Matzner' boundary conditions:
purely outgoing radiation for r*- + ~, purely in-
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going (down the hole) radiation for r*-—~.

the form
u in mode l, m can then be put in

P,„,(f, m) = (1/8~) I(=I'IL(ro*)I',
where L(r*) is aa scattering solution of th h-
mo eneoug us equation for a wave of the f

o e o-
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&& (—qr *). Here
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I mi 5 = 1+4q+ (4/m)(u/(u

is the barrier integral (4/n')J (V —E)"'dr*
the orbit r *t

A'* from
i r, o the outer turning point x * a

q = (1 —i)[l(l +1)]'I'(3~ For small () (i.e. ,
arge y), the limit rc*= 3&&5 =M/ '-
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FIG. 1. Reduced (m ~}potential
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result is shown in Fig. 2, where the q =0 term
contributes over 99.9/p at all frequencies. If the
barrier penetration integral is large, &» 1, then
one obtains an asymptotic form

P„,(l, m) =f' ——(4m) "'

m
X ~/m ere

(19)

This form can also be obtained directly, using
standard" WEB methods. It shows both the high-
frequency cutoff since & = Iml6- ~ as u&/v, = ImI

-~, and the q»1 cutoff (angular beaming) since
&=4q-~ for q-~. The amount of radiation
which goes down the black hole is given by Pd,„„(l,
m) = (8m) 'IC I'IR(r, *)I', where R(r*) is a scatter-
ing wave function with an incident wave moving
to the right, R(r*)ccD,I, ;,i, (+r}r*). In the 6-0
limit used in Eqs. (16)-(19), where r,~-0, one
then finds Pd«n = +Out

The azimuthal distribution of GSR could be
studied by summing the series Qu»&, '(e, y)
x exp( —ilmot) in some approximation. Calcula-
tions based on geodesic arguments" show that
an analog of the "rotating searchlight effect"
occurs and gives a narrow peaking of the field
as a function of p —co, t as in ordinary synchro-

tron radiation.
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Recent observations by Imbert to test predictions and observations of Goos and Han-
chen by reflecting a 1aser beam near the total reQection angle contradicts classical and
quantum predictions for the longitudinal displacements of linearly polarized incident
plane waves. They can be simply interpreted as a Stern-Gehrlach type of measurement
of the photon spin, provided the photon has a nonzero rest mass.

Recent observations by Mazet, Imbert, and
Huard' on total reflection, which appear to con-
tradict classical expectations, have led the au-
thors' to a possible interpretation in terms of a
nonzero photon mass. In this Letter we want to
discuss this contradiction in terms of the quantum
theory of radiation and generalize our proposal
to the quantum theory of massive photons con-

sidered as true spin-1 particles.
To our knowledge the best quantum analysis of

the longitudinal displacement of an incident light
beam near total reflection (the Goos-Hanchen ef-
fect') has been proposed by Agudin' on the basis
of time delay of scattering processes based on
the theories of Wigner, ' Smith, ' and Froissart,
Goldberger, and Watson. '
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