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an experiment similar to the one described above
(5 mfp thick) on the first of the High Energy As-
tronomical Observatories satellites. This experi-
ment will measure the spectra of all cosmic rays
up to 10"eV. The spectrometer to be flown will
be deeper, and the improved statistics from the

p1anned two-year exposure @all help to resolve
the discrepancy at 1000 Gev.
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%'e have found that differential equations can be form invariant under a larger class of
infinitesimal transformations than those considered by Lie and Ovsjannikov. We give a
generalization of the concept of point transformation. It is necessary for the systematic
determination of the generators of continuous invariance groups of, e.g. , the partial dif-
ferential equations of physics. Applying it to Schrodinger's equation, time-dependent
constants of the motion are found systematically, as illustrated here for the hydrogen
atom.

Lie' based his group theoretical treatment of
systems S of differential equations (linear and/or
nonlinear) of order m,

F"( ux, 8,u, 8&8~u, ~ ' ')'=0; r = 1,2, ' ' ~, B,

with coordinates of two types, »

x=(x' x' ~ x")
and

u= u x u x ''' u x (sb)

upon the concept of an infinitesimal point trans-
formation of an N-dimensional Euclidean mani-
foM

(x,u)- (x, u)

The functions u' may be taken to be the original
unknown functions appearing in S, or they may be
new functions that have arisen by reduction of S
to an "equivalent" set S' of quasilinear first-or-
der equations through the device of introducing
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unknown functions for the various derivatives ap-
pearing in S.'

Lie's transformations are of the form

x'= f'(x, u; 5a), withx'=f'(x, u;0);

discussion below). We generalize the infinitesi-
mal point transformations of Lie to infinitesimal
transformations of the space obtained by augment-
ing the original coordinates with their derivatives
with respect to the x', that is, we let

u '(x) =g '(x, u; 6a), with u'(x) =g '(x, u; 0).
(5)

x'=f'(x, u, &;u, &&a,u, ; Ga),
We have found that when dealing with partial

differential equations it is necessary to enlarge
the concept of invariance usually adopted' (cf..the The total changes in the x' and u' due to varia-

tion of the parameter a are thus

&x'=(df'/da), 0&a—= ]'(x u, e&u, a, &ku, ~ ~ ) 5a, 5u'=(dg'/da), 05a=@'(x,u, e&u, s;Bku, ~ ~ ~ ) 6a.

We define q,
' by

&u'(x)/ex' = &u'/&x'+ 5a q

and g~p by

&2u'(x)/Bx'Bx'=&'u'/ax'Bx" + Sari,.k', etc.

(6)

(7a)

(7b)

If Eqs. (7) are form invariant under the generalized transformations (5), then YF", r=1, 2, ~ ~ ~, R,
must vanish, where

0 e g lk s(s 2) Ojk s(s s f)

Osvjannikov has extended Lie's treatment to
partial differential equations of arbitrary order
in the following manner'. He defines the Lie op-
era.tors

X= g'(x, u) &/Bx'+q'(x, u) 8/eu' (9)

and its extensions X, X, etc. He then considers
a system S of differential equations in which the
highest-order derivative that appears is of order

He proposes that invariance of the system S
with respect to X is to be understood in the sense
of invariance with respect to the operator ob-
tained by extension of X up to the order m. He
then develops two alternative methods of finding
such invariants. One of these, set forth in de-
tail for systems of linear second-order partial
differential equations, involves a direct action of
X and its extensions upon the equations of inter-
est. In the other approach, to avoid considera-
tion of high extensions of X, he replaces the sys-
tem S by an "equivalent" quasilinear S' having
partial derivatives of the first order only, by
introducing new unknown functions and, if re-
quired, differentiations.

In this section we wish to show that for partial
differential equations our transformations sub-
sume Osvjannikov's, while for ordinary differen-
tial equations and their derived systems of first-
order linear equations they are equivalent to
Lie's transformation, as long as the highest de-

rivative in the ordinary differential equation can
be uniquely isolated. Then

d'u' t', du' d'u' d' 'u'&
dx„=WI(~, u', dx, d

(10)

and derivatives higher than the mth can be ex-
pressed in terms of the pth and lower derivatives.
Derivatives higher than mth are then redundant in
(1). When one converts an ordinary differential
equation to a set of first-order partial differen-
tial equations by substituting new variables for
the derivatives, the number of independent func-
tions u' that can be introduced is for the same
reason strictly limited, and a strict equivalence
can be established between the ordinary differen-
tial equation and the set of derived first-order
partial differential equations. The two approaches
are equivalent and our transformations give the
same results as those of Lie.

Suppose, however, that the differential equa-
tion(s) of interest are of the general form (1). In
this case one may again lay down a set of quasi-
linear defining equations, but though the origi:nal
system may provide additional relations among
the derivatives, these relations are not sufficient
in general to make derivatives of arbitrarily. high
order redundant. There is, therefore, no aPri-
axi reason for supposing that arbitrary functions
of these derivatives cannot occur in an invariant
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transformation of the original system S. Further-
more, it is seen that there is no longer a unique
correspondence between the original differential
equations and a quasilinear set of first-order
equations. The concept of a set S' of a finite num-
ber of such equations" equivalent" to the original
equation or set S of equations is, therefore, at
best ambivalent, and transformations of the form
(5) do not in general reduce to Lie's form (4).

As a consequence, our more general concept of
the invariance of differential equations to infini-
tesimal transformation removes three essential
limitations of Osvjannikov's formulation:

(i) In his first formulation there is no direct
way to obtain invariants that convert the u" to
their second- and higher-order derivatives with
respect to the x', or to functions of these de riva-
tives. Such invariants are, however, of wide-
spread occurrence.

(ii) In order to obtain such invariants using
Osvjannikov's method, one follows his lead and
replaces the given higher-order partial differen-
tial equation(s) by a set of quasilinear first-order
equations, then uses his second method. How-

ever, if one stops at the point where derivatives
of order no higher than g appear, then one may
miss important invariants of the equations.

(iii) Ovsjannikov proves that the commutation
relations of a set of invariant operators, X„X„
~ ~ ~ are the same as those of the extended opera-
tors. ' In contrast, in our approach, if one con-
siders a heirarchy of ever more general F opera-
tors, Y';, Y;, Y;, ', which are allowed to depend

upon successively higher derivatives, the local
Lie groups obtained are not, in general, isomor-
phie.

Let K be a linear differential operator such
that

Zq(x) = 0, x = (x', x', ~ . , x").

Then, for a wide class of operators in the space
of solutions g,

Q = q(x)+q'(x)s, + q" (x)e,s,.+ ~ ~ ~ . (12)

If Q is an infinitesimal invariant, then

KQg =0.

This is a differential equation determining Q, and
it can be solved by the classical method of Lie.'
It yields solutions of the form Q = y Q, where
the y are arbitrary constants and the Q are of
the form (12).

We treat time-dependent SchrOdinger equations
as an example (K =H —ie„where H is the Hamil-
tonian) and outline one method for determining in-
variants involving an infinite number of deriva-
tives —a method which is useful when the spec-
trum of H is known. In this, the original equation.
is subjected to a similarity transformation with
operator D =D,D, . The general theory, a quan-
tum analog of Hamilton-Jacobi theory, specifies
these operators, which are chosen to transform
to an equation which has no negative-order deri-
vatives and whose spectrum is linear in the quan-
tum numbers determining the original energy.
For the hydrogen atom, D takes the form

D =D„D,= exp r 8„1n,
~

&,
~

exp t s, »t'-i 2Z
'(2Z )

(14)

A straightforward application of the methods of Lie to the transformed equation yields a fifteen-param-
eter Lie group. Transforming back to the generators of the original equation, we obtain, in addition to
the angular momentum L and the Runge-Lenz vector A with components

Q~ =I „, Q2=L, ) QS=L„ Q4 =&x~ Q5 =&.~ Q6 =&.~ (15a)

the following time-dependent generators:

Q78=(QQ) D e" (&is&„+&,——,iraqi )D(Q )9+ ,2QQ=D ~BD, Q~~= [Q~, Qv], Q~~= [Q„QV],

Qim=[QB Q7] Qxs=[Q. Qs] Qi4=[QS QB] Qxs=[Q6 QB]
(15b)

The O(4, 2) Lie algebra, can then be constructed by taking appropriate linear combinations of Q, and Q, .
This reproduces the results of previous authors" with an important difference, namely, an explicit
time dependence is present in (15b).'

Anderson, Kumei, andWuUman and Kumei' gave a detailed presentation of the methodology and re-
sults for a variety of systems including the free particle, harmonic oscillator, rigid rotator, symmet-
ric top, and hydrogenlike atom.
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The response of a gravitational wave antenna to linear, mixed, and randomly polarized
sources is studied as a function of sidereal time, source coordinates, and antenna loca-
tion and orientation. We find that the gravitational signals reported by Weber cannot be
highly polarized tensor radiation coming from a single source at the Galactic nucleus.

Weber' has reported bursts of gravitational
radiation apparently arriving from the direction
of the Galactic center. The amount of power ob-
served amounts to about 10 '&Qc'/yr for a source
at the Galactic center radiating iso&opically.
Experiment' shows that the spectral width is at
least 10' Hz and probably more than 10' Hz. Es-
timating the efficiency of the detectors, one ar-
rives at Galactic mass-loss rates around 10 M/
yr, which seems to be about 10m times larger
than the upper limit allowed by astronomical da-
ta. ' Although the range to the source has not
been determined, we assume with Weber that the
most probable location for a source is near the
high-density Galactic nucleus.

Of the various reasonable assumptions made in
estimating the Galactic mass-loss rate from the
observed flux density, only the assumed isotropy
of the source seems sufficiently assailable as to
relinquish two orders of magnitude. Some of the
variously proposed sources of gravitational ra-
diation would not be expected to radiate isotrop-

ically and with random polarization. It is known
that the degree of planar anisotropy in source
motion is related to the degree of radiated linear
polarization. ' For example, the gravitational
flux from a rotating pair of masses would be
linearly polarized in the equatorial plane. More
recently, Misner et al. ' have considered the
synchrotronlike modes of mass falling into a ro-
tating super black hole. The resulting polarized
gravitational radiation could fall into narrow
angles about the galactic disk. In this Letter, we
examine the consequences of a polarized source
for Weber's antennas and others. We also study
the effects of changing the antenna orientation
and polarization angle.

The driving signal for any type of gravitational
tensor wave detector is proportional to certain
components of the local Riemann curvature ten-
sor given by the vacuum solutions of Einstein's
field equations, and is a scalar of the form'
-c'R, ,"l l„. Here, l is a vector along the
antenna axis. The general response of a gravita-


