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FIG. 3. Measured values of Oz' plotted against I'„',
with theoretical curves generated from Eq. (2} shown

for comparison. Inset table gives data for r„' &O.OS

with the calculated values of R(0}V.

We find N(0)V for an 1800-A gold film to be 0.72

+ 0.004.
Recent measurements' of N(0)V for copper and

silver indicate similar results, and we plan fur-
ther measurements on these metals. It would

also be of interest to study the thickness depen-
dence and extrapolate N(0) V to the bulk metal.

*Based on work performed under the auspices of the
U. S. Atomic Energy Commission.

W. L. McMillan, Phys. Rev. 175, 537 {1968}.
J. T. Hauser and H. C. Theuerer, Phys. Bev, Lett.

14, 270 (1965).
W. L. McMillan, Phys. Rev. 167, 331 (1968).
N. E. Christensen, Solid State Commun. 9, 749

(1971); N. W. Ashcroft and J. W. Wilkins, Phys. Rev.
Lett. 14, 285 (1965).

D. H. Prothero, S. M. Freake, and C. J. Adkins,
Physica (Utrecht) 55, 744 (1971).

C. Vallette, Solid State Commun. 9, 895 (1971);
E. Kratzig, Solid State Commun. 9, 1205 {1971).

Metallic State of the Electron-Hole Liquid, Particularly in Gernlanjum

W. F. Brinkman, T. M. Rice, P. %. Anderson, and S. T. Chui*
Bell Telephone Labo~atomes, Murray HiZZ, Nese Jersey 07974

(Received 3 January 1972)

%e have calculated the ground-state energy of an electron-hole liquid. The kinetic and

exchange energies are included exactly, and the correlation energy is estimated using
Hubbard's modification of the random-phase approximation. In an isotropic electron-
hole liquid, the metallic state is not bound relative to free excitons. In Ge the anisotrop-
ic band structure leads to a substantial binding of the metallic state. Application of a
large (ill) strain to Ge reduces the situation to one resembling the isotropic case.

Recently there has been much interest in the properties of Ge in which a high concentration of exci-
tons have been optically excited. Since the lowest exciton states in Ge are indirect, they are relative-
ly long-lived and many experiments can be performed under equilibrium conditions. Keldysh has pro-
posed that the striking changes that occur with increasing exciton density in the recombination radia-
tion, far infrared absorption, and the electrical conductivity, are due to the formation of metallic
droplets of the electron-hole liquid. In this Letter we wish to report microscopic calculations of the
ground-state energy of a, metallic electron-hole liquid. We consider three cases: (a) an ideal electron-
hole liquid of equal-mass particles, (b) Ge (unstrained), and (c) Ge with a large (111) strain.

In the weak-binding limit in which the exciton binding energy E~ «E„, the lowest direct energy gap,
and the total number of excited carriers is very small compared to the number of atoms, we may
write the Hamiltonian as

I 2

a= p c,'(k)a„-;, at-, ;,+~ e '(k)&g, 'bg, ,+Q a p(q)p(-q)

where al, ;,~ and b&, ,~ are creation operators for electrons and holes with spin o. in I and J sub-bands,
respectively, and the wave vector k is measured from the extremum of each sub-band. The Coulomb
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interaction is reduced by the dielectric constant x, and the density operator p(q) is given by

(2)

In an isotropic electron-hole liquid we consider only one isotropic sub-band for each carrier, Mjy =1,
and write s,'(k) = e,'(k) = k'/2m. It is convenient to express the energy in units of the exciton Rydberg
(Es = p, e /2x', where p, =m/2), and to introduce the interelectron separation x, measured in units of
the Bohr radius as = ~&/pe'. The ground-state energy E, per electron-hole pair can be written as

2.21 1.832
Eg= 2

— +~corr ~
+s +s

where the first and second terms are the usual kinetic and exchange energies. The correlation energy
has been calculated by generalizing an approximation introduced for the electron gas by Hubbard. 3 In
his approach one modifies the random-phase approximation (RPA) to include approximately the second-
order exchange diagrams between particles in the same sub-band. In the present case we generalize
Hubbard's expression for the total polarizability (4'+ iZ') to include the contribution from each sub-
band,

+ 2z' = Q f, (k)II; '"(k, cu)+ Q f~(k)II; "(k, ~), (4)

where 0; " is the usual RPA polarizability for
the i sub-band and

f,.(&) =(pF;a+[I —'(I + J)--~]k f/(kF; +0 ),

with kF the Fermi wave vector. In Fig. 1, curve
a, we plot the resulting ground-state energy ver-
sus x, . We obtain a minimum value of E, = 0.86
at x, = 2.0. This value is considerably lower than
the value = —0.35 found by Hanamura who used
the high-density expansion to estimate c„„.As
in the electron gas there are substantial correc-
tions to the high-density expansion for ~,~1. How-
ever, E,'& —1 indicates that the metallic state is
not bound relative to free excitons. In our approx-
imate calculation, while we may hope to have in-
cluded electron-electron and hole-hole correla-
tions reasonably well, it is not clear that we
have adequately treated electron-hole correla-
tions. W'e have included electron-hole scattering
to second order but it is the repeated scattering
of the electron and hole which is responsible for
the exciton bound state as r, -. An approximate
criterion for the occurrence of such a bound state
was given by Mott, ' i.e., @F~ aB = 1, where 4 F~
(=&.63m, kF) is the Fermi-Thomas screening
wave vector. This leads to a critical value z,
= 10 which is 4 times larger than that in a single-
carrier model because of the increased screen-
ing and reduced mass in the presence of two car-
riers. In fact, the ideal electron-hole gas, be-
cause of perfect nesting of the electron and hole
Fermi spheres, is always unstable at zero tem-
perature. We find, however, that the binding

~ energy of the electron-hole paired state is ex-
tremely small for x,&8. Thus the omission of
the electron-hole multiple scattering in the re-
gion of interest, x, ~2, may not be crucial. A
second argument can be found by examining the
Wigner-Huntington' calculation for the metallic

FG -1,0—

-2.0

FIG. 1. The ground-state energy &z of the electron-
hole metallic liquid as a function of the interelectron
spacing &,. Curve a, an ideal isotopic band structure,
with equal masses; curve b, Ge (unstrained); and
curve c, Ge in presence of large (ill) strain. The
units are exciton Hydbergs and the exciton Bohr radius.
For Ge we choose p = 0.046m and x = 16.4 (see text).
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phase of hydrogen. Since the hole (proton) is as-
sumed localized, the electron-hole interaction is
accurately treated and they find for mass ratio
rnid/m, »1

E, (m, /m„) = —1.05+0.8(m, /m„)'~' . (5)

p, = —', (2m, +m, i) +A '
(p, =0.046), (6)

gives a value of 2.65 meV for the exciton binding
energy, in fair agreement with the experimental
values of 3.6 and 2.8 meV."' The kinetic energy
of the metallic state depends on the density-of-
states mass which, for the electrons, is given by
m„= (m, 'm, )'"=0.22. For the holes the heavy
band gives a mass m»= 0.347 and the light band,
rn» = 0.042. Thus the density-of-states masses
are much larger than the masses entering the ex-
citon and lead to a much reduced kinetic energy
in the metallic phase. For the electrons, taking
M;; = 6;;, the exchange energy between electrons
in each ellipsoid can be evaluated numerically.
The exchange energy does not depend on the mass
but does depend weakly on the shape of the Fermi
surface. For the holes, the matrix elements

Thus for a, mass ratio m„/m, & 256 the metallic
phase is unbound. Thus we may expect that
E~o(m, /m„= 1)a - 1.

In the low-density limit, there is a weak Van
der Waals attraction between excitons. Theore-
tical studies' have shown that two excitons will
bind into an exciton molecule even for equal mass-
es. Therefore, for large r„E,(~,) & —1. How-

ever, estimates of De Boer's' quantum param-
eter A* indicate that in this density regime the
exciton gas is in the quantum limit. The form of
E~ (r,) for an ideal electron-hole gas is a difficult
theoretical problem and it is not clear whether
there are, in fact, two separate minima, for E~ (r,)
as our calculations indicate.

In Ge it is important to include explicitly the
band structure. The electrons are in four ellip-
soids of revolution at the L point of the Brillouin
zone with transverse and longitudinal masses
rn& =0.082 and m, =1.58.' There are two degen-
erate valence bands at I" with an.energy spectrum

e(k)=Ak +[B k4+C (k k +k k +k k )]'

where A. =13.38, B=8.48, and C =13.15 in units
of I /2m. ~o In this case the average masses en-
tering into the exciton binding energy and into the
kinetic energy of the metallic state are very dif-
ferent. In the former case, because of the s-like
symmetry of the exciton wave function, a reduced
mass p. , defined by

M;;(k, %+g) are complicated functions of the angle9
and the exact evaluation of the exchange energy
can only be carried out numerically. We find
that the ground-state energy per electron includ-
ing the kinetic and exchange energies exactly has
the form

E, = 0.468/x, ' —1.136/x, + e„„,
where the energy and ~, are in exciton units with
p, = 0.046 and x = 15.4. In evaluating the correla-
tion energy in the Hubbard approximation, the
band structure is replaced by four spherical elec-
tron sub-bands and two spherical hole sub-bands
with M;;, = 6;;, with the masses that enter into Eq.
(6). The results are shown in Fig. 1, curve b.
While our treatment of the correlation is surely
conservative' we find that the metallic state is
strongly bound relative to free excitons, in con-
trast to the ideal case discussed above. The equi-
librium value of x, =0.63 corresponds to a density
of electrons (or holes) of 1.8x10 ' cm ', in good
agreement with the experimental value of 2x10"
cm '.' Ne find the binding energy e~ relative to
the experimental exciton energy to be 1.7 meV.
Pokrovskii and Svistunova, '4 by measuring the
shape of the coexistence curve at low densities,
found a value ~~ = 2.7 meV.

In the presence of a (111) stress larger than
500 kg/cm', the band structure of Ge simplifies
considerably. The degeneracies between the four
electron ellipsoids and between the valence bands
at I are lifted and there is just one electron and
one hole ellipsoid. The former masses are as
quoted above and the latter have values m, '=A
—-', (B +SC )"' m, '=A+(B +—', C )'". The kinetic
and exchange energies can be calculated straight-
forwardly, and we find

E, = 1 .616/x, 2 —1 .631/x, + e „„,
where the units are the same as in unstrained Ge.
Because of the simple band structure it is pos-
sible to carry through exactly the modified RPA
calculation as described previously and the re-.
sults are shown in Fig. 1, curve c. The metallic
state minimum is shifted to lower densities and in
our calculations has a value E~ =1.06. Undoubted-
ly, improvements will move E~ lower, but it is
not clear if the metallic state is lowest in energy.
It should be pointed out that if one estimates the
correlation energy using the masses appropriate
for calculation of the exciton binding energy, one
obtains a value smaller by 0.1 Ry for z„„.Ex-
periments on the coexistence curve for strained
Ge have not been carried out to our knowledge
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and would be of great interest since the density
difference between the two phases should be con-
siderably reduced. Recombination radiation
studies have been reported by Bageev, Galkina,
and Gogolin, ' which indicate a large reduction in
metallic state binding. Benoit a la Guillaume,
Salvan, and Voos ' have measured a density of
2x10 ' cm in the metallic phase which is some-
what larger than the value of 1.2x10 cm that
we find.

In conclusion we find that the large binding en-
ergy of the metallic state of the electron-hole liq-
uid in Ge is due mainly to its special band struc-
ture. For simple band structure, such as in
strained Ge, the binding is much weaker if in-
deed the metallic phase is bound. A detailed ac-
count of the calculations reported here will be
published elsewhere.

The authors wish to thank P. Nozihres for an
enlightening correspondence which corrected an
error in our correlation energy calculation.
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University, Princeton, N. J. 08540.
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Phonon dispersion curves for CuI have been measured at room temperature for the
[100], [110], and [111] symmetry directions by using inelastic neutron scattering. The
results are interpreted in terms of a rigid-ion model. Estimations are given for elas-
tic constants.

Continuing the study of the lattice dynamics of
cuprous-halide crystals with zinc-blende struc-
ture, we report in this paper the results of co-
herent inelastic neutron scattering from CuI.

Our interest in these compounds dates from some
years ago, since the unfruitful attempt to fit zero-
wave-vector phonons of CuC1 with an oversim-
plified rigid-ion-lattice dynamical model. ' Mar-
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