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A self-consistent second-order Green's-function theory of a one-dimensional Heisen-
berg antiferromagnet, exhibiting spin waves without long-range order, is shown to yield
qualitatively different results than a hybrid version treated by Richards. Comparison
with exact and computer solutions for energy shows that the self-consistent solution re-
presents a substantial improvement in local spin behavior at low temperatures. Long-
range spin behavior at low temperatures is not correctly predicted by the self-consis-
tent theory.

(S„S«) =48
( r, ) Y(1 —cosk)(1+ 2n«)/E«, (2)

where 1/n«= exp(p&«) —1 and p =1/ksT. The Fou-

In a recent Letter, ' Richards showed that the
results of a second-order Green's-function theo-
ry (GFT) for a one-dimensional Heisenberg anti-
ferromagnet gave good agreement with both Fish-
er's classical solution' for the inverse correla-
tion length and the static correlation function and
with experimental neutron scattering results for
these quantities in (CD,),NMnCl, (TMMC) on the
temperature interval 1.1 ~ T - 40'K. The spin-
spin correlations between nearest and next-near-
est neighboring spins in Ref. 1 were taken from
the classical solution, rather than obtaining them
from a self-consistent Green's-function theory
(SCGFT). This procedure raises the question of
whether the good agreement of the GFT with the
classical solution is in large measure enforced
by the utilization of the classical parameters in
the GFT. We carry out a SCGFT in this Letter,
compare the results with the classical theory,
and find that the good agreement implied in Ref.
1 largely disappears.

The second-order decoupling scheme for the
Green's-function equations of motion satisfying
the rotational invariance implied by the form of
the Heisenberg Hamiltonian previously used to
study the paramagnetic region of Heisenberg mag-
nets yields an equation for the excitation ener-
gies identical to that given by Richards'.

E,«2 = '-,'J2F(l + ~2)(1 —cosk)(1+& cosk),

where k is a wave vector in units of the inverse
lattice spacing, h =217', I/(1+&2), &=S(8+1), and
where the v, =(S, S;)/Y (i =1, 2) are normalized
first- and second-nearest-neighbor spin-spin
correlation functions.

The spectral theorem gives the Fourier trans-
form of the static correlation function which is
also identical with Richards's expression:

&„(k,h) = [2(1+h cosk)] "'sin(2k) cosnk.

The first self-consistency equation is

7, = —MF(&), ~ = (1+h)/h,

where

,'E(t«) =D —(D—'—1)"',
D =1+C(1+6)
C =3/n2F

b, =n(h/2N)1/2[2'~L, (0, 2n) +L,(0, 2n)].

(4)
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The second self-consistency equation is given by

in{[1+(
—'18)'/ ](—'M —1)

= ——2'nh"'L, (0, 2w) + (2C i
7 ) i ) ' '.

We first give the results for the ground state for
which n~=0. Setting the I„=0 in the above equa-
tions, one obtains

(~)1/2coth 1(~)1/2[4'(0)C]-1/2

Equations (5) and (ll) provide numerical values
for the ground-state parameters given in Table I.
Our values for &, are considerably larger than
the classical predictions, 7, = 1, and agree quite
well with the exactly known value in the case of

rier lattice transform furnishes the relations
(S,.S„)=I)I 'Q„(S«~ S „)cosnk. These provide, for
the values n=0, 1, two linearly independent equa-
tions which uniquely determine both ~, and ~,.
The sums that appear in these two equations,
which are explicity independent of n„, are exactly
summable in the thermodynamic limit. The self-
consistency equations that follow after this sum-
mation is performed may be expressed in terms
of the remaining lattice sums L„(k, , k&):

L„(k, , kz)=2M 'QA„(k, k)n, ,

where
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TABLE I. Ground-state parameters for the one-
dimensional Heisenberg antiferromagnet.

~oa
(SCGFT)

~ Oa
f

(Exact)

1/2
1

5/2

0.728 80 —0.495 71
0.929 85 —0.602 14
0.998 60 —0.769 41

—0,591
—8/4 &7g & —1/2
—6/7 &T( & —5/7

Ground-state energy per spin is 2 JS(S+ 1)v& .
Bef. 5,

'Bef. 6.

8= 2,' and the rigorous bounds in the case of
S= 2.

The ground-state results for S=2 are applica-
ble to TMMC and provide a description of the ex-
citation energies E«according to Eq. (1). The ex-
perimental results of inelastic neutron magnetic
scattering at 4.4 K are known to fit very closely
the curve E„=(6.1 meV)lsinkl "over the entire
one-dimensional Brillouin zone. "7 Since h =0.998'6,
our E„does not quite go to zero at k = n [see Eq.
(12) below]. However, the percentage deviation
of E~ from the value

E„=4 J'[g S(S+1)(1+7,)]"'sink,

is only 5'%%uo at k =0.95~ and 1.5% at k =0.9m.

Richards, ' using classical theory values T]
= —1 at zero degrees, predicts

E» = 4 J'[T~ S(S+1)]'~' sin k,
while I.ovesey and Meserve' use a theory of the
shape of the relaxation function to get

Numerical calculations' on finite spin systems
produce EI, spectra with no evidence for such a
gap, so we are led to believe its presence r'epre-
sents a flaw in the SCGFT. It appears that the ze-
ro-temperature SCGFT corresponds to a ground

P

state which is deficient in the long-range spin-
spin correlations and concomitant large fluctua-
tions in sublattice magnetization about its zero
average value since h 4 l implies finite staggered
susceptibility and finite correlation range.

Solutions for finite temperature are now re-
stricted to low temperatures where the principal
contributions to thermal excitations have wave
vectors in the neighborhood of k =0 and k =w.
(For TMMC this corresponds to T &25'K. ) The
lattice sums in Eq. (3) involve a phononlike spec-
trum on the interval 0&k&v/2. The sums L,„(0,
2n) become integrals in the thermodynamic limit,
and we find upon using E„~k and extending the up-
per limit of integration to infinity that

L„(0, 2w) =m(l -k)/6P'Eo»+O(P ~).

The evaluation of L„(2m, n) is more complicated
since its value is very sensitive to the height of
the rotonlike minimum in the excitation spectrum
given by Eq. (12). Upper and lower bounds for
L„(~~,m) are obtained by the following procedure.
At low temperatures, Eq. (4) indicates L,(zm, a)
= —L, (2m, w) so one need only consider L,(2n, n)
The excitation spectrum is approximated by EI,
=EG[(1+k cosk)/(1-k)]"'. Expanding n« in a, geo-
metric series, one obtains

L (
—'m, m) = (2/a')(2k) ~ Q exp( —APE )I„, (14)

E« = 4 J [S(S+1)]'I'sink. I„=f 'dx[x(l+ —,'x)] "'exp(-rpE~x) (15)

With J= V.V'K, the maximum E„at k = w/2 is 5.65
meV (present theory), 6.41 meV (Richards), and
V.85 meV (Lovesey and Meserve).

Equation (1) predicts an energy gap at k =w,

has x, = —1+ (1 —k) '~' as the upper limit of inte-
gration. Substitution of the rigorous bounds,
exp( —4x) & (1+ 2x) "'-1 into Eq. (15) yields

EG(&) = «I 3 1'(1+~,)(1 -k)]"', (12) I„=[(~pE~ + ,'q/vr] "' ex—p(—pE~&)

which at T =0 is 0.298 meV, and a parabolic de-
pendence of E~ for k near n. The energy gap is,
of course, a consequence of k=2!7,~/(1+7', ) being
less than unity. A further implication of h being
less than unity is a finite value of the staggered
susceptibility at T =O'K since the staggered sus-
ceptibility is proportional to k/(1 —k). This in
turn implies finite values for both v, the inverse
correlation range, and (S„~S,) ', contrasted with
the value zero predicted by the classical theory
for these two quantities.

xe f([x,(~pE, +!g)]"'), (16)

for some value of p satisfying O~q~l. For the
case of S = 2, the error function in Eq. (16) may
be replaced by unity for T &25'K.

After inserting the lattice sums Lo and L, into
Eqs. (9) and (10), upper and lower bounds on 7',

and &, are determined by varying the parameter
g for fixed T The quantity .(S„S«) in Eq. (2) has
the Lorentzian form in terms of k = n —k, (S„S«)
&c (k'+ x') ', defining the inverse correlation
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FIG. 1. Inverse correlation range & versus tempera-
ture for TMMC (S=~). Solid line, Fisher s classical
solution; dashed line, Richards's result; cross-sec-
tioned curve, upper and lower bounds of present theory.
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FIG. 2. Nearest-neighbor correlation function (So S&)

versus temperature for the linear Heisenberg antiferro-
magnet with 8= l. Solid line, Fisher's classical model;
dashed line, computer calculation of Weng; dotted line,
present theory.

The inverse correlation length ~ depends on the
parameter q. Upper and lower bounds for v at
each temperature result by varying g between
zero and unity.

Our results, Fisher's classical solution, and
Richards's result for the inverse correlation
length K are shown in Fig. 1. One sees from the
figure that the large discrepancy between our
SCGFT and the classical solution remains for
temperatures up to 25'K. ' Inspection of Fig. 2

depicting (S, S,) data for S= 1 shows the improve-
ment of our SCGFT predictions" over the classi-
cal results when compared with the computer cal-
culations of %eng. "

In conclusion, the SCGFT has been shown to
produce an improvement over the classical-theo-
ry description of local spin behavior, as exempli-
fied by nearest-neighbor correlations in the low-
temperature region for a one-dimensional Heisen-
berg antiferromagnet. The long-range spin be-
havior is, on the other hand, much more accu-
rately given by the classical theory. This un-
balanced performance does not seem to us sur-
prising, given that the ground state of this sys-
tem is characterized by an infinite spin corre-
lation length and concomitant macroscopic fluc-
tuations in sublattice magnetization. These char-
acteristics, similar to those present near an or-
dinary Curie or Neel point of a three-dimension-

al magnet, are known to receive adequate de-
scription via classical theory.
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