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Low-field (third-derivative) electroreflectance spectra taken on fully depleted space-
charge regions are shown to be linear in the modulation potential and free from experi-
mentally induced line-shape distortions due to modulation wave-form, dc bias, or bar-
rier-potential effects. Using a metal-semiconductor (Schottky diode) configuration, ac-
curate threshold energies of the E triplet of Ge are obtained. The observed spin-orbit—
splitting energy of the valence band confirms that the highest transition also occurs at I'.

We report that the quadratic scaling dependence
of low-field electroreflectance (ER) spectra' upon
the electric field can be combined with the square-
root dependence of the electric field on the bar-
rier potential in a fully depleted space-charge
region to yield third-derivative? surface-barrier
electroreflectance (SBER) spectra which are lin-
ear in the modulation potential, rather than the
electric field, and therefore are rigorously free
from modulation wave-form or dc bias effects.

In contrast to high-field ER measurements,3"3
we show that it is nof necessary to use square-
wave flat-band modulation in order to obtain quan-
titative spectra accurately representing crystal
properties when the low-field depletion barrier
conditions are satisfied. This result greatly
simplifies experimental procedures and enables
third-derivative spectroscopy to be extended to

a wide range of materials and temperatures for
which quantitative ER measurements are not
presently feasible. Since these third-derivative
spectra are theoretically the sharpest of all mod-
ulation spectra, very precise values of transition
threshold energies and broadening parameters
can be obtained when they are analyzed by pre-
viously developed low-field ER techniques.®

In a fully depleted space-charge region of a
semiconductor, formed by, e.g., a p-x junction,”
metal-semiconductor barrier,” heterojunction,”
or semiconductor-electrolyte® configuration,

minority carriers which diffuse from the bulk
and/or are thermally or optically excited in the
space-charge region are extracted at the surface,
so no inversion layer can form. The electric
field & and the potential ¢ are related at any
point in the barrier by Poisson’s equation’:

8%(@) =~ (2eN,/€,)(¢ +kT/e), (1)

where N is the donor impurity concentration and
€, is the static dielectric constant. At low fields,
the field-induced change in the reflectivity, AR/
R, is a fourth-rank tensor of the form?!?

AR/R = &L (hw), (2)

where the spectral line-shape function L(7w) is
determined entirely by the energy band structure
and its selection rules through the polarization

of the incident light and the direction of the elec-
tric field. If ¢ = V(¢) is a time-dependent poten-
tial, the time-dependent part of AR(¢)/R is linear-
ly proportional to the time-dependent part of

V(t). The spectrum measured experimentally by
phase-sensitive detection is therefore

(AR/R)eyye =AR,/R
== (2eN,V,/€,) L(w), (3)
where AR, and V, are the fundamental harmonic

components of AR(¢) and V (), respectively. The
measured spectrum is completely independent of
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dc bias, internal barrier-potential effects, and
the harmonic content of V(¢), and depends on ex-
perimental conditions only through V,, N,, and
€,. The electric field need not be separately de-
termined. For depletion regions on p-type semi-
conductors, — N, is replaced by +N,, the accep-
tor impurity concentration, in Egs. (1) and (3).

Equation (3) is valid if [V (¢)| lies between a low-
er limit determined either by field inhomogeneity
effects®® or by the loss of the fully depleted con-
dition, and an upper limit determined by the
breakdown of Eq. (2) at high fields. Approximate
theoretical expressions for these limits are easi-
ly obtained and show that for carrier concentra-
tions N~ 10 ¢m "3 or less, the aliowed range of
V(t) for linear response is at least several volts
for higher interband transitions (broadening pa-
rameter I'~50 meV). Third-rank tensorial (lin-
ear ER) effects!! can also invalidate Eq. (3) in
compound semiconductors, but these effects can
be eliminated by the proper choice of surface
orientation and/or polarization of the incident
light. We note that the applicability of the tech-
nique and the range of V(¢) can (and skould) be
determined directly from the modulation data
themselves by first establishing the existence of
a fully depleted barrier by, e.g., capacitance
measurements (which can also be used to deter-
mine N),” then measuring the dependence of a
spectral feature such as an extremum or zero
crossing of (AR/R)., as a function of dc bias for
a fixed ac modulation. The allowed range of V()
is that range for which negligible variation of the
spectral feature is observed. Alternatively, the
real-time wave form, AR(¢)/R, of the spectral
feature can be measured for a triangular modula-
tion wave form®; the allowed range of V(¢) then
corresponds to the linear range of AR (¢)/R.

The above theory was verified by direct applica-
tion to the E, and E, +A, transitions of Ge, where
linearized third-derivative SBER line shapes
could be compared directly to previously pub-
lished SBER spectra® which were obtained with
square-wave flat-band modulation. Our measure-
ments were taken on a (100) surface of an 0.18-
Q-cm n-type Ge crystal [N,=(1.30+0.03)x 10
cm “%] using a standard room-temperature elec-
trolyte technique.!® Capacitance measurements,
and the linearity and bias dependence tests, in-
dicated that linearized third-derivative spectra
could be taken with any modulation wave form
lying in the range —0.35 V>V (#)>-2 V., The
third-derivative spectrum, taken with a 0.500 V
peak-to-peak square-wave modulation potential at
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FIG. 1. Linearized third-derivative spectrum of the
E, and E{+A transitions of Ge (solid line), taken with
~ 0,70 V dec bias and 0.500 V peak-to-peak square-wave
modulation. Square-wave flat-band ER spectrum for
the same transitions (dashed line), from Ref. 5.

-0.70 V dc bias (surface-field modulating be-
tween 42 and 57 kV ¢m™!) is shown as the solid
line in Fig. 1. Identical spectra were obtained
from triangular and sinusoidal modulation wave
forms with the same fundamental harmonic coef-
ficient V,, as predicted by the theory. The dashed
line is a previously published depletion barrier
spectrum taken on a (100) surface of a slightly
more heavily doped »n-type Ge crystal, using
square-wave modulation between flat band and 81
kV ¢cm™!, and has been scaled to bring the posi-
tive extremum into coincidence with our results.
The agreement between the two spectra provides
direct evidence that flat-band modulation is not
necessary within the stated conditions. The main
differences, a somewhat greater broadening and
a discrepancy at the positive peak of the E +A,
spectrum, disappear if our surface field is also
increased.

We illustrate the capabilities of linearized
third-derivative spectroscopy by obtaining thresh-
old and broadening energies of the relatively
weak E,’ transitions of Ge, using a Schottky bar-
rier configuration formed by evaporating a 40-A
Ni film on a (100) surface of a Ge crystal of car-
rier concentration N, =1.49X10' cm~3, Sample
construction followed the method of Fischer? ex-
cept that the insulating Al,O, layer was omitted.
The metal-semiconductor or Schottky barrier
configuration is ideal for linearized third-deriva-
tive spectroscopy, since it combines the best
features of the electrolyte method (direct elec-
trical contact to the space-charge region, elim-
ination of polarization charge buildup at insulating
layers with consequent line-shape independence
to minority carrier formation and light intensity)
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FIG. 2. Linearized third-derivative spectra of the
E|’ triplet of Ge at 301°K (top) and 78°K (bottom). Or-
dinate scales: left, 10'°L(#w), in em® V" 2; right,
10°AR/R. Note difference of scale factor between top
and bottom,

and metal-oxide-semiconductor (MOS) configura-
tions (wide temperature range, general applica-
bility), and eliminates a common sensitivity of
both MOS and electrolyte techniques to surface
states,

Linearized third-derivative E,’ spectra are
shown in Fig. 2. Individual transitions are sig-
nificantly sharper and better separated than in
any previous spectra obtained either by ER ¥
or first-derivative!5!® techniques. The 78°K spec-
trum presents no difficulties due to the well-de-
fined baseline. On the basis of conclusions ob-
tained from E, transition spectra,'? threshold and
broadening energies are determined by fitting a

two-dimensional low-field line shape! to each
structure, and the results are shown in Table I.
The Seraphin coefficients of the three-phase air-
Ni-Ge system (not needed for the threshold and
broadening energy analysis®) are fortuitously

such that the measured line shapes are symmetri-
cal about the baseline, and consequently the same
values of E, would be obtained if a three-dimsion-
al-model line shape were used, although the broad-
ening energies would then be 20% smaller. Esti-
mated uncertainties, obtained from repeating the
analysis for a series of such spectra, are also
given. The spin-orbit splitting of the conduction
bands is determined from these results to be 186
+2 meV, as compared with the value 191+ 5 meV
obtained by Fischer.!®!* A striking demonstration
of the resolution obtainable with the third-deriva-
tive technique is our ability to measure in addi-
tion the spin-orbit splitting of the valence bands:
Our value of 299+ 5 meV is in excellent agree-
ment with the value of 295+3 meV previously ob-
tained from the much sharper E, and E,+A, tran~
sitions to the lowest conduction band.'® This
agreement proves conclusively that the previous
assignment'** of this structure to the I, —~ T',©
transition is correct.

The room-temperature spectrum contains the
broad underlying structure which dominates first-
derivative spectra and is attributed to transitions
along A."'" The values shown in Table I were
obtained by assuming that the E,’ structures were
symmetric about this background. The threshold
energy of the I'yy ~T,€ transition, 2.983+0.004
eV, is substantially larger than the value, 2.92
+0.05 eV, obtained from photoemission experi-
ments. Consequently, our measured energy shift
with temperature, 32+ 5 meV, is much less than
either the value of 84 meV obtained for the E,
transition'®® or the value of 80 meV previously
attributed to this transition,'* and is more consis-
tent with the relative magnitude of the known

TABLE I, Threshold energies E,, broadening energies I', and temperature shifts

AE,

, for the E| triplet in Ge, All numbers are in meV, and were obtained from a

two-dimensional model as explained in the text. The symmetry notation corresponds

to that of Ref. 16.

E, r AE,
Transition 78°K 301°K 78°K 301°K (78—301°K)
ry—r’ 30151 2983+ 4 411 662 —32%5
D=1 32011 3169+ 4 401 64+ 2 —382%5
Y =T 3500+ 4 3470+ 30 615 1005 (-307?)
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pressure shifts of these transitions.!®

In conclusion, we have shown that quantitative
low-field (third-derivative) ER spectra are easily
obtainable on fully depleted space-charge regions,
with the metal-semiconductor configuration being
particularly attractive. This technique should be
extremely useful for studying higher interband

transitions for a wide range of materials and tem-

peratures. The independence of these spectra to

variations of barrier height with surface orienta-
tion makes it particularly attractive for the re-
cently proposed signature analysis technique.?®
In addition, since the value of the electric field
plays a relatively minor role, linearized third-
derivative spectroscopy is remarkably similar to
wavelength modulation!®!®
tive, rather than first-derivative, spectra can be
obtained directly. This suggests that linearized
third-derivative spectroscopy will also be useful
in studying the effect of secondary perturbations
such as stress and hydrostatic pressure.
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